WATER EFFICIENCY
Water-use efficiency is a California way of life, and the City of Sacramento continues to encourage water conservation. Find tips to save water and available rebates at SacWaterWise.com

INTRODUCTION
This Consumer Confidence Report (CCR) is presented to help City of Sacramento Water customers understand where their water comes from and what it contains. Routine water supply testing for more than 100 substances is performed to confirm that your water meets or exceeds all federal and state drinking water standards. This CCR summarizes the most recent detected water quality results through 2022 and is the most current publication for the period June 01, 2023 through May 31, 2024.

The City is committed to providing customers with up to date information on their drinking water through timely, transparent public notification. For more detailed information, visit sacramentowaterquality.com

SOURCES OF WATER
Eighty percent of the City of Sacramento’s water supply comes from the American and Sacramento Rivers, with the remainder supplied by groundwater wells and transfers from Sacramento County Water Agency and Sacramento Suburban Water District. For more information on Sources of Water see Source Water Assessment on page 3.
REQUIRED DISCLOSURES FOR DRINKING WATER CONSUMERS

This information is presented to further educate consumers about drinking water contaminants.

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:
  - Microbial contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
  - Inorganic contaminants, such as salts and metals, that can be naturally occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
  - Pesticides and herbicides, that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
  - Organic chemical contaminants, including synthetic and volatile organic chemicals, that are byproducts of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural application, and septic systems.
  - Radioactive contaminants, that can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, the U.S. Environmental Protection Agency (U.S. EPA) and the State Water Resources Control Board (State Water Board) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. State Water Board regulations also establish limits for contaminants in bottled water that provide the same protection for public health.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the U.S. EPA’s Safe Drinking Water Hotline (1-800-426-4791).

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. U.S. EPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

SOURCE WATER ASSESSMENT

A watershed sanitary survey (WSS) focuses on evaluating source water quality and potential watershed contaminant sources to provide key information to aid in understanding how to maintain and possibly improve source water protection, the first barrier in protecting public health. An evaluation of water treatment plant capabilities and treated water quality provides an assessment of the ability of a water utility to treat their source water.

Initial WSS reports for the City’s Sacramento River and American River water sources were completed in 2000 and 2001. These reports indicated that both rivers are most vulnerable to contaminants from recreational activities and that the Sacramento River is also most susceptible to agricultural contaminants. The City of Sacramento, in partnership with several other water utilities, complete WSS updates of the river water sources every five years. The WSS updates were most recently completed in 2020 and 2018 for the Sacramento and American Rivers, respectively.

An assessment of the City’s groundwater wells was completed in January 2001. Due to the proximity to potential contaminant sources, the wells north of the American River are considered most vulnerable to sewage collection systems, leaking underground storage tanks, known contaminant plumes, agricultural drainage, gas stations, dry cleaners, metal plating and chemical processing storage facilities, electrical/electronic manufacturing, and automobile repair and body shops. Wells south of the American River are considered vulnerable to leaking underground storage tanks and sewage collection systems.

Despite these potential vulnerabilities, your water continues to meet or exceed all state and federal drinking water standards. Please call 916-808-5454 to request a summary of the assessments or make an appointment for an in-person viewing.

SOURCE WATER ASSESSMENT

This information is presented to further educate consumers about drinking water contaminants.

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:
  - Microbial contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
  - Inorganic contaminants, such as salts and metals, that can be naturally occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
  - Pesticides and herbicides, that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
  - Organic chemical contaminants, including synthetic and volatile organic chemicals, that are byproducts of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural application, and septic systems.
  - Radioactive contaminants, that can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, the U.S. Environmental Protection Agency (U.S. EPA) and the State Water Resources Control Board (State Water Board) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. State Water Board regulations also establish limits for contaminants in bottled water that provide the same protection for public health.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the U.S. EPA’s Safe Drinking Water Hotline (1-800-426-4791).

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. U.S. EPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

SOURCE WATER ASSESSMENT

A watershed sanitary survey (WSS) focuses on evaluating source water quality and potential watershed contaminant sources to provide key information to aid in understanding how to maintain and possibly improve source water protection, the first barrier in protecting public health. An evaluation of water treatment plant capabilities and treated water quality provides an assessment of the ability of a water utility to treat their source water.

Initial WSS reports for the City’s Sacramento River and American River water sources were completed in 2000 and 2001. These reports indicated that both rivers are most vulnerable to contaminants from recreational activities and that the Sacramento River is also most susceptible to agricultural contaminants. The City of Sacramento, in partnership with several other water utilities, complete WSS updates of the river water sources every five years. The WSS updates were most recently completed in 2020 and 2018 for the Sacramento and American Rivers, respectively.

An assessment of the City’s groundwater wells was completed in January 2001. Due to the proximity to potential contaminant sources, the wells north of the American River are considered most vulnerable to sewage collection systems, leaking underground storage tanks, known contaminant plumes, agricultural drainage, gas stations, dry cleaners, metal plating and chemical processing storage facilities, electrical/electronic manufacturing, and automobile repair and body shops. Wells south of the American River are considered vulnerable to leaking underground storage tanks and sewage collection systems.

Despite these potential vulnerabilities, your water continues to meet or exceed all state and federal drinking water standards. Please call 916-808-5454 to request a summary of the assessments or make an appointment for an in-person viewing.
Please see 2022 Consumer Confidence Reports published by these agencies for more detailed water quality information. High turbidity can hinder the effectiveness of disinfectants. Turbidity is a measure of the cloudiness of the water. We monitor it because it is a good indicator of water quality. Gross alpha results in all City sources measure below levels which exceed the uranium MCL. Water additive that promotes strong teeth. Various natural and man-made sources. While the City of Sacramento tests for more than 100 substances, this report only lists those detected at or above the federal or state level for reporting. The State allows us to monitor for some contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of our data, though representative, are more than one year old.

### Water Quality Analysis Results for 2022

**Your water meets or exceeds all federal and state drinking water standards.**

#### 1 Regulated for Public Health (Primary Drinking Water Standard)

<table>
<thead>
<tr>
<th>Constituent (Unit)</th>
<th>Highest Amount Allowed</th>
<th>State or Federal Goal</th>
<th>Year Monitored</th>
<th>System Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorine as Cl₂ (mg/L)</td>
<td>4</td>
<td>4</td>
<td>2022</td>
<td>0.7</td>
</tr>
<tr>
<td>Haloacids (µg/L)</td>
<td>60</td>
<td>NA</td>
<td>2022</td>
<td>47</td>
</tr>
<tr>
<td>Trihalomethanes (µg/L)</td>
<td>80</td>
<td>NA</td>
<td>2022</td>
<td>71</td>
</tr>
<tr>
<td>Control of DBP Precursors – TOC (mg/L)</td>
<td>2.0</td>
<td>NA</td>
<td>2022</td>
<td>1.8</td>
</tr>
<tr>
<td>Aluminum (µg/L)</td>
<td>1.0</td>
<td>0.6</td>
<td>2020 - 2022</td>
<td>ND</td>
</tr>
<tr>
<td>Arsenic (µg/L)</td>
<td>10</td>
<td>0.004</td>
<td>2020 - 2022</td>
<td>2.7</td>
</tr>
<tr>
<td>Barium (mg/L)</td>
<td>1</td>
<td>2</td>
<td>2020 - 2022</td>
<td>ND</td>
</tr>
<tr>
<td>Copper Total (µg/L)</td>
<td>50</td>
<td>100</td>
<td>2020 - 2022</td>
<td>ND</td>
</tr>
<tr>
<td>Fluoride in source water (µg/L)</td>
<td>1.3 (AL)</td>
<td>0.3</td>
<td>2020</td>
<td>0.09</td>
</tr>
<tr>
<td>Fluoride in treated water (µg/L)</td>
<td>2.0</td>
<td>1</td>
<td>2022</td>
<td>ND</td>
</tr>
<tr>
<td>Lead (µg/L)</td>
<td>15 (AL)</td>
<td>0.2</td>
<td>2020</td>
<td>ND</td>
</tr>
<tr>
<td>Nitrate as Nitrogen (mg/L)</td>
<td>10</td>
<td>10</td>
<td>2022</td>
<td>1.4</td>
</tr>
<tr>
<td>Selenium (µg/L)</td>
<td>50</td>
<td>30</td>
<td>2022</td>
<td>ND</td>
</tr>
<tr>
<td>Trichloroethylene [TCE] (µg/L)</td>
<td>5</td>
<td>1.7</td>
<td>2020 - 2022</td>
<td>ND</td>
</tr>
<tr>
<td>Gross Alpha (µCi/L)</td>
<td>15</td>
<td>0</td>
<td>2014 - 2021</td>
<td>ND</td>
</tr>
<tr>
<td>Turbidity (NTU)</td>
<td>1 NTU</td>
<td></td>
<td>2022</td>
<td>0.9</td>
</tr>
<tr>
<td>Turbidity (NTU)</td>
<td>at least 95% of samples</td>
<td>≤ 0.3 NTU</td>
<td>2022</td>
<td>NA</td>
</tr>
</tbody>
</table>

**Units**

- µg/L: micrograms per liter; unit of concentration, equivalent to 1 part per billion (ppb) in nearly 32 years.
- µS/cm: micromhos per centimeter; measure of electrical conductivity.
- mg/L: milligrams per liter; unit of concentration equivalent to 1 part per million or second in approximately 15.5 years.
- ppt: nanograms per liter; unit of concentration equivalent to 1 part per billion or second in nearly 32,000 years.
- NTU: Nephelometric Turbidity Units; measures cloudiness of water.
- pCi/L: picocuries per liter; measurement of radiation.
- TOC: Total Organic Carbon; The highest order of a sample with color-free water that yields a detectable odor.

**Key Terms and Abbreviations**

- AL: Action Level: The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.
- CL₂: Free Chlorine: chlorine available for disinfection.
- MCL: Maximum Contaminant Level: The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set to protect the odor, taste, and appearance of drinking water. Secondary MCLs are not enforceable under the Safe Drinking Water Act. They are based on the best available science to address other potential health or non- health effects associated with contaminants.
- MCLG: Maximum Contaminant Level Goal: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency (EPA) to protect the health of consumers.
- MRDL: Maximum Residual Disinfectant Level: The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.
- MRDLG: Maximum Residual Disinfectant Level Goal: The level of drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.
- ND: Not detected.
- NA: Not applicable.
- PHG: Public Health Goal: The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency.
- Primary Drinking Water Standard: drinking water standards (MCLs, MRDLs and treatment techniques (TTs) for contaminants that affect health, along with their monitoring and reporting requirements.
- TT: Treatment Technique. A required process intended to reduce the level of a contaminant in drinking water.
<table>
<thead>
<tr>
<th>Constituent (Unit)</th>
<th>Highest Amount Allowed MCL</th>
<th>Year Monitored</th>
<th>System Average</th>
<th>PRIMARY WATER SUPPLY</th>
<th>WATER TRANSFERS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>E.A. Fairbairn-Water Treatment Plant (American River)</td>
<td>Sacramento River Water Treatment Plant</td>
</tr>
<tr>
<td>Chloride (mg/L)</td>
<td>500</td>
<td>2020 - 2022</td>
<td>31</td>
<td>5.4</td>
<td>5.3</td>
</tr>
<tr>
<td>Copper (mg/L)</td>
<td>1</td>
<td>2020 - 2021</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Color (units)</td>
<td>15</td>
<td>2022</td>
<td>ND</td>
<td>ND - 7</td>
<td>ND - 1.5</td>
</tr>
<tr>
<td>Manganese (µg/L)</td>
<td>50</td>
<td>2020 - 2022</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Odor (units)</td>
<td>3</td>
<td>2022</td>
<td>ND</td>
<td>ND - 1.5</td>
<td>ND - 31</td>
</tr>
<tr>
<td>Specific Conductance (µS/cm)</td>
<td>1600</td>
<td>2020 - 2022</td>
<td>374</td>
<td>98</td>
<td>150</td>
</tr>
<tr>
<td>Sulfate (mg/L)</td>
<td>500</td>
<td>2020 - 2022</td>
<td>9.9</td>
<td>8.8</td>
<td>14</td>
</tr>
<tr>
<td>Total Dissolved Solids (mg/L)</td>
<td>1000</td>
<td>2020 - 2022</td>
<td>250</td>
<td>61</td>
<td>90</td>
</tr>
<tr>
<td>Turbidity (units)</td>
<td>5</td>
<td>2022</td>
<td>ND</td>
<td>ND - 2.7</td>
<td>ND - 2.7</td>
</tr>
</tbody>
</table>

**Other Parameters of Interest to Customers / Constituents With No Established MCL**

<table>
<thead>
<tr>
<th>Constituent (Unit)</th>
<th>Year Monitored</th>
<th>System Average</th>
<th>PRIMARY WATER SUPPLY</th>
<th>WATER TRANSFERS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>E.A. Fairbairn Water Treatment Plant (American River)</td>
<td>Sacramento River Water Treatment Plant</td>
</tr>
<tr>
<td>Calcium (mg/L)</td>
<td>2020 - 2022</td>
<td>26</td>
<td>11</td>
<td>15</td>
</tr>
<tr>
<td>Chromium, Hexavalent (µg/L)</td>
<td>2020 - 2022</td>
<td>4.3</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Hardness (mg/L)</td>
<td>2020 - 2022</td>
<td>141</td>
<td>38</td>
<td>57</td>
</tr>
<tr>
<td>Hardness (grains per gallon)</td>
<td>2020 - 2022</td>
<td>8.2</td>
<td>2.2</td>
<td>3.3</td>
</tr>
<tr>
<td>Magnesium (mg/L)</td>
<td>2020 - 2022</td>
<td>16</td>
<td>2.0</td>
<td>4.7</td>
</tr>
<tr>
<td>Sodium (mg/L)</td>
<td>2020 - 2022</td>
<td>25</td>
<td>2.6</td>
<td>5.9</td>
</tr>
<tr>
<td>Total Alkalinity (mg/L)</td>
<td>2020 - 2022</td>
<td>127</td>
<td>25</td>
<td>44</td>
</tr>
<tr>
<td>Germanium (µg/L)</td>
<td>2018 - 2020</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Manganese (µg/L)</td>
<td>2018 - 2020</td>
<td>0.46 - 1.3</td>
<td>ND - 0.74</td>
<td>ND - 1.65</td>
</tr>
<tr>
<td>Total HAA5 (µg/L)</td>
<td>2018 - 2020</td>
<td>24.1</td>
<td>4.2 - 35.8</td>
<td></td>
</tr>
<tr>
<td>Total HAA6Br (µg/L)</td>
<td>2018 - 2020</td>
<td>3.4</td>
<td>1.0 - 7.8</td>
<td></td>
</tr>
<tr>
<td>Total HAA9 (µg/L)</td>
<td>2018 - 2020</td>
<td>27</td>
<td>5.0 - 38.8</td>
<td></td>
</tr>
</tbody>
</table>

(A) Range of all results observed in distribution system.

(1) There was no MCL for hexavalent chromium in effect during 2022; The previous MCL of 10 µg/L was withdrawn on September 11, 2017.

(2) The Fourth UCMR required monitoring for several unregulated Haloacetic Acid compounds in addition to the regulated HAA5 presented in Table 1.
LEAD
If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with customer service lines and home plumbing. The City of Sacramento is responsible for providing high quality drinking water, but cannot control the variety of materials used in customer plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the EPA Safe Drinking Water Hotline 1-800-426-4791 or at http://www.epa.gov/lead.

LEAD IN SCHOOLS
Between 2017 and 2019 the City of Sacramento provided lead testing to all public pre-kindergarten through 12th grade schools receiving City of Sacramento water supply as well as private schools that opted to participate. More than 600 samples were tested representing 132 schools and results were non-detect (less than 5 micrograms per liter) in 97 percent of the samples. All results are publicly available on the State Water Board’s website http://www.waterboards.ca.gov/drinking-water/cartin/dinking-water/leadsamplinginschools.html

CYANOTOXINS
Microcystins and cylindrospermopsin are algal toxins produced by naturally occurring cyanobacteria in surface water sources (such as the American and Sacramento Rivers). These compounds are subject to a U.S. EPA Health Advisory and due to their potential presence in our source waters, the City of Sacramento voluntarily monitors for these compounds during vulnerable seasons, typically summer through late fall. There were no detections of microcystins or cylindrospermopsin during routine 2022 monitoring.

EARTHY OR MUSTY TASTE AND ODOR
Some customers may notice an earthy or musty taste in City water, most often occurring in late summer. This is due to the presence of Geosmin and 2-Methylisoborneol (MIB), odor compounds which are not removed through conventional water treatment. Although these compounds do not impact the safety of the City’s drinking water, some customers find the taste and odor to be objectionable. Chilling the water can help improve the taste.

FEDERAL AND STATE REVISED TOTAL COLIFORM RULE
This Consumer Confidence Report (CCR) reflects changes in drinking water regulatory requirements during 2021. These revisions add the requirements of the federal Revised Total Coliform Rule, effective since April 1, 2016, to the existing state Total Coliform Rule. The revised rule maintains the purpose to protect public health by ensuring the integrity of the drinking water distribution system and monitoring for the presence of microbials (i.e., total coliform and E. coli bacteria). The U.S. EPA anticipates greater public health protection as the rule requires water systems that are vulnerable to microbial contamination to identify and fix problems. Water systems that exceed a specified frequency of total coliform occurrences are required to conduct an assessment to determine if any sanitary defects exist. If found, these must be corrected by the water system. The state Revised Total Coliform Rule became effective July 1, 2021.

What You Should Know About...

What You Should Know About...

LEAD
If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with customer service lines and home plumbing. The City of Sacramento is responsible for providing high quality drinking water, but cannot control the variety of materials used in customer plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the EPA Safe Drinking Water Hotline 1-800-426-4791 or at http://www.epa.gov/lead.

LEAD IN SCHOOLS
Between 2017 and 2019 the City of Sacramento provided lead testing to all public pre-kindergarten through 12th grade schools receiving City of Sacramento water supply as well as private schools that opted to participate. More than 600 samples were tested representing 132 schools and results were non-detect (less than 5 micrograms per liter) in 97 percent of the samples. All results are publicly available on the State Water Board’s website http://www.waterboards.ca.gov/drinking-water/cartin/dinking-water/leadsamplinginschools.html

CYANOTOXINS
Microcystins and cylindrospermopsin are algal toxins produced by naturally occurring cyanobacteria in surface water sources (such as the American and Sacramento Rivers). These compounds are subject to a U.S. EPA Health Advisory and due to their potential presence in our source waters, the City of Sacramento voluntarily monitors for these compounds during vulnerable seasons, typically summer through late fall. There were no detections of microcystins or cylindrospermopsin during routine 2022 monitoring.

EARTHY OR MUSTY TASTE AND ODOR
Some customers may notice an earthy or musty taste in City water, most often occurring in late summer. This is due to the presence of Geosmin and 2-Methylisoborneol (MIB), odor compounds which are not removed through conventional water treatment. Although these compounds do not impact the safety of the City’s drinking water, some customers find the taste and odor to be objectionable. Chilling the water can help improve the taste.

FEDERAL AND STATE REVISED TOTAL COLIFORM RULE
This Consumer Confidence Report (CCR) reflects changes in drinking water regulatory requirements during 2021. These revisions add the requirements of the federal Revised Total Coliform Rule, effective since April 1, 2016, to the existing state Total Coliform Rule. The revised rule maintains the purpose to protect public health by ensuring the integrity of the drinking water distribution system and monitoring for the presence of microbials (i.e., total coliform and E. coli bacteria). The U.S. EPA anticipates greater public health protection as the rule requires water systems that are vulnerable to microbial contamination to identify and fix problems. Water systems that exceed a specified frequency of total coliform occurrences are required to conduct an assessment to determine if any sanitary defects exist. If found, these must be corrected by the water system. The state Revised Total Coliform Rule became effective July 1, 2021.

What You Should Know About...

What You Should Know About...

LEAD
If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with customer service lines and home plumbing. The City of Sacramento is responsible for providing high quality drinking water, but cannot control the variety of materials used in customer plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the EPA Safe Drinking Water Hotline 1-800-426-4791 or at http://www.epa.gov/lead.

LEAD IN SCHOOLS
Between 2017 and 2019 the City of Sacramento provided lead testing to all public pre-kindergarten through 12th grade schools receiving City of Sacramento water supply as well as private schools that opted to participate. More than 600 samples were tested representing 132 schools and results were non-detect (less than 5 micrograms per liter) in 97 percent of the samples. All results are publicly available on the State Water Board’s website http://www.waterboards.ca.gov/drinking-water/cartin/dinking-water/leadsamplinginschools.html

CYANOTOXINS
Microcystins and cylindrospermopsin are algal toxins produced by naturally occurring cyanobacteria in surface water sources (such as the American and Sacramento Rivers). These compounds are subject to a U.S. EPA Health Advisory and due to their potential presence in our source waters, the City of Sacramento voluntarily monitors for these compounds during vulnerable seasons, typically summer through late fall. There were no detections of microcystins or cylindrospermopsin during routine 2022 monitoring.

EARTHY OR MUSTY TASTE AND ODOR
Some customers may notice an earthy or musty taste in City water, most often occurring in late summer. This is due to the presence of Geosmin and 2-Methylisoborneol (MIB), odor compounds which are not removed through conventional water treatment. Although these compounds do not impact the safety of the City’s drinking water, some customers find the taste and odor to be objectionable. Chilling the water can help improve the taste.

FEDERAL AND STATE REVISED TOTAL COLIFORM RULE
This Consumer Confidence Report (CCR) reflects changes in drinking water regulatory requirements during 2021. These revisions add the requirements of the federal Revised Total Coliform Rule, effective since April 1, 2016, to the existing state Total Coliform Rule. The revised rule maintains the purpose to protect public health by ensuring the integrity of the drinking water distribution system and monitoring for the presence of microbials (i.e., total coliform and E. coli bacteria). The U.S. EPA anticipates greater public health protection as the rule requires water systems that are vulnerable to microbial contamination to identify and fix problems. Water systems that exceed a specified frequency of total coliform occurrences are required to conduct an assessment to determine if any sanitary defects exist. If found, these must be corrected by the water system. The state Revised Total Coliform Rule became effective July 1, 2021.
TNI EARLY ADOPTER RECOGNITION FOR CITY LABORATORY

The City of Sacramento’s Water Quality Laboratory was recognized by the California Environmental Laboratory Accreditation Program (ELAP) for proactively implementing the TNI Standard quality management system before the required compliance date of 2024. The City’s lab maintains ELAP Certification for microbiological, inorganic and organic testing of drinking water samples with over 11,000 analyses performed in a calendar year.

FOR QUESTIONS ABOUT THIS REPORT CONTACT
Rory Hartkemeyer
916-808-3738

U.S. EPA Safe Drinking Water Hotline
1-800-426-4791
http://epa.gov/green-water-and-drinking-water

NOTICE OF OPPORTUNITY FOR PUBLIC PARTICIPATION
The Sacramento City Council generally holds public meetings on Tuesday at 2 p.m. and/or 5 p.m. in the City Council Chambers at 915 I Street, Sacramento. You can access Council agendas at www.cityofsacramento.org/-clerk.

POTABILITY STATEMENT
The City of Sacramento water supply meets all potability requirements as set forth by the United States Environmental Protection Agency (USEPA) and the California Safe Drinking Water Act, Title 22. This certification relates to City of Sacramento water that is provided up to the property line or backflow preventer, whichever comes first.

UP-TO-DATE WATER QUALITY INFORMATION IS AVAILABLE
www.sacramentowaterquality.com