Pavement Condition Report

August 2017

City of SACRAMENTO
Department of Public Works
PAVEMENT CONDITION REPORT
2017 UPDATE

City Pavement Condition Team

Hector Barron, Director of Public Works
Juan Montanez, Streets Manager
Gregory Smith, Senior Engineer
Mark Brown, Program Analyst

In consultation with
Margot Yapp, NCE
Mei-Hui Lee, NCE
Ken Huisman, Märker Geospatial
Table of Contents

Sacramento Today .. 1

- Pavement Condition .. 2
- Council Districts .. 4
- Maintenance Strategies ... 5
- Americans with Disabilities Act (ADA) Requirements ... 6

Historical Funding and Pavement Maintenance ... 7

- Funding Sources .. 8
- Operating and Capital Expenditures ... 10

Sacramento Tomorrow ... 13

Conclusions .. 16

Appendix A

PCI Maps for Council Districts
Sacramento Today

With over 3,000 lane-miles of streets, the City of Sacramento owns and maintains the fifth largest street network in California (not including counties). Only the Cities of Los Angeles, San Diego, San Jose, and Fresno have larger street systems in California. To truly understand the magnitude of this network, consider that if we were to drive on every lane of every street, we would be in Florida by the time we were done.

In addition, Sacramento has the highest population density in the region and serves as a regional hub, so the streets carry a correspondingly higher traffic volume.

This large street network is a significant public asset, valued at over $1.7 billion! Residents, visitors, and businesses all utilize this asset, whether to go to work, take their children to school, go shopping, or simply to play and recreate. It is therefore one of the most critical assets owned and maintained by the City.

With this in mind, the Department of Public Works is committed to cost-effective maintenance strategies so as to meet their mission and vision to “provide innovative and sustainable public infrastructure and services” and to “preserve and enhance the quality of life,” respectively.

To achieve this, the Department has utilized a pavement management program (PMP) for many years. A PMP is a planning tool that answers typical questions, such as:

- What does the City’s street network consist of?
- What is the existing condition of the City’s streets?
- What maintenance and rehabilitation strategies are deployed to improve street conditions?
- Is the current funding adequate?
- What is the most cost-effective way to implement a multi-year capital improvement program?
- What are the impacts of additional funding?

This report summarizes some of the key information on the City’s street network and answers the above questions.
Pavement Condition

In order to determine the health or condition of the streets, the Pavement Condition Index (PCI) is used. The PCI is a scale from 0 to 100, with zero being a pothole riddled street and 100 a newly surfaced street. A PCI score of 70 to 100 is considered “Excellent/Good,” 50 to 69 as “Fair,” 25 to 49 as “Poor,” and 0 to 24 as “Very Poor.” The PCI may be considered similar to a “grade” for each street section. Generally, it is desirable to achieve a PCI of 75 or above. The photos to the right illustrate a range of City streets in different conditions.

A portion of the street network is surveyed every year using the ASTM D6433 pavement distress protocols, which are nationally accepted and used by many cities and counties in the United States, as well as internationally. The arterials are inspected annually and approximately one-third of the residentials are inspected every year. This provides an up-to-date snapshot for planning purposes.

Today, Sacramento’s streets have an average PCI of 66, which is considered to be in “Fair” condition. For comparison, Figure 1 indicates that Sacramento is in the upper third when compared to other large cities\(^1\). As a side note, Sacramento County has a PCI of 54, while the statewide average is 65.

\[
\begin{array}{|c|c|}
\hline
\text{City} & \text{PCI} \\
\hline
\text{Riverside} & 84 \\
\text{Bakersfield} & 69 \\
\text{San Francisco} & 68 \\
\text{Sacramento} & 66 \\
\text{Los Angeles} & 65 \\
\text{Stockton} & 64 \\
\text{Seattle} & 64 \\
\text{Fresno} & 63 \\
\text{San Jose} & 62 \\
\text{Portland} & 61 \\
\text{San Diego} & 59 \\
\text{Long Beach} & 57 \\
\text{Oakland} & 54 \\
\text{Sacramento Co.} & 54 \\
\hline
\end{array}
\]

\(\text{Pavement Condition Index}\)

Figure 1. PCI Comparison with Other Cities

\(^1\) PCI data are from 2016, with exception of Sacramento (2017), Seattle (2013), and Portland (2015).
The pavement network, however, is composed of different classifications such as arterials, collectors, and residential streets. Arterials are characterized by higher speeds, more truck, bus, and automobile traffic and typically have four lanes or more. Residential streets are typically two lanes and have much lower speeds and traffic. Collectors are in between and their function is to “collect” traffic from residential streets and funnel them to arterials.

As shown in Figure 2, the City has significantly more residential streets (more than 60 percent) than any other classification. They also have a slightly lower average PCI (65) than for arterials (66) and collectors (66). This is typical of many cities, since funding tends to be prioritized on streets with higher traffic volumes.

There are significant financial implications to the PCI. Obviously, pavements deteriorate over time. The deterioration is slow at first, but then accelerates when the PCI drops below 70 (see Figure 3). As the pavement deteriorates, the cost of repair also increases rapidly. If there is inadequate funding to maintain streets in their current condition, we can safely conclude that the unfunded backlog will grow rapidly in the future.

Figure 2. Pavement Network Breakdown

The unfunded backlog consists of pavement repairs that are needed, but cannot be performed due to lack of funding. This includes street maintenance, rehabilitation, and reconstruction activities. Deferring maintenance to future years will result in higher costs, as streets that need to be overlaid now will require reconstruction later. The current unfunded backlog is approximately $179 million.

Figure 3. Pavement Life Cycle and Repair Costs
Council Districts

The street network is almost evenly divided among the eight council districts, but they are not necessarily all in the same condition. Figure 4 indicates that District 1 has the highest PCI (78) and District 2 (58) the lowest, with the remaining districts in the 60s. This is partly due to the fact that the streets in District 1 are newer when compared with District 2.

Pavement age is just one factor in today’s pavement condition; traffic levels, the underlying subgrade soils, drainage flows and past maintenance practices are also contributing factors. Therefore, it should not be surprising that the PCI for each district is not identical (Figure 5 shows the percentage of streets in condition category for each district.) Consequently, it is not always possible to implement a “one size fits all” approach; each district will have different funding and maintenance needs.

Appendix “A” included in the back of this report contains maps of each council district and the condition of the streets in those districts, as well as the unfunded backlog.
Maintenance Strategies

The street condition is affected by the funding level, as well as the type and timing of maintenance strategies. Historically, the Department has implemented a variety of maintenance treatments to repair streets. They include a combination of relatively inexpensive pavement preservation treatments, such as slurry seals on streets in good condition to significantly more expensive overlays and reconstruction for streets in fair and poor condition. The Department follows best management practices to extend the paving dollar as much as possible by implementing an aggressive pavement preservation policy. Some of the treatments that have been applied include rubberized overlays and seals, recycled asphalt pavements, and bonded wearing courses.

Figure 3 (on page 3) summarized the general costs of repair for streets in different conditions. For example, streets that are in good condition only require seals at an average cost of $4.00 per square yard. In contrast, streets that are in very poor condition will require reconstruction at costs of as much as $75.50 per square yard, which is 18 times more expensive. Or to put it another way, the cost of reconstructing one failed street is equivalent to the cost of preserving 18 good streets.

Maintaining streets is, in many ways, similar to maintaining a car, i.e. inexpensive oil changes are much more cost-effective in the long run than to do nothing and then replace the car when it fails. Therefore, it is important to continue with an aggressive preventive maintenance policy.
Americans with Disabilities Act (ADA) Requirements

The maintenance of streets require a more complete approach to design, operation, and maintenance to enable safe access for users of different ages and abilities regardless of the mode of transportation. This affects all aspects, such as restriping for bike lanes, traffic signals, or road diets. One key component is the Americans with Disabilities Act (ADA), which requires public entities to ensure that persons with disabilities have access to the pedestrian routes within the public right-of-way.

In July 2013, a joint technical guidance was published by the Department of Justice and the U.S. Department of Transportation to clarify what road maintenance activities would trigger the need to upgrade affected curb ramps to current standards. Essentially, any street maintenance defined as an “alteration” will trigger the need to upgrade ADA curb ramps.

Since almost all the treatments utilized by the Department are considered “alterations,” this affects an estimated 25,400 curb ramps and will accelerate the schedule to upgrade non-compliant ramps. The upgrading/replacement of curb ramps represents a significant opportunity for the City to improve ADA access during the completion of pavement rehabilitation and maintenance activities, but the costs for these ramp upgrades need to be planned and accounted for in the City’s paving costs. As an older city, most of Sacramento’s streets were built prior to current ADA standards, with examples of non-compliant curb ramps shown in the photos.

It is estimated that upgrading curb ramps will add as much as 37 percent to street maintenance costs. The City has committed at least 20 percent of its transportation funds for ADA compliance.

The upgrading/replacement of curb ramps represents a significant opportunity for the City to improve ADA access.
Historical Funding and Pavement Maintenance

When sufficient funding is available, it is possible for any city to maintain streets at an acceptable level. However, for Sacramento, Figure 6 illustrates two trends that have occurred since 2008:

1. Between 2008 and 2010, almost 180 lane-miles of streets a year were maintained or repaired. However, since 2011, this has dropped to an average of 64 lane-miles a year, or about a third of the previous level of effort.

2. The result is a downward trend in pavement condition as illustrated by the Pavement Quality Index (PQI). The PQI is a measure that was used between 2008 to 2016; beginning in 2017, the City has switched to the more widely-accepted PCI as discussed in the previous section. Note too that for the first time, there is no resurfacing program for 2017.

There are several reasons for the decreased number of streets that were being treated every year:

- The City’s funding levels reached a high of $10.3 million in 2009 (primarily ARRA\(^2\)) before the economic recession (see Figure 7) and then dropped sharply to $1.4 million in 2010. Funding has not recovered to 2008 levels, but stayed relatively constant at approximately $4.8 million a year since 2012.

- Increased cost of complying with regulatory requirements, e.g. American Disabilities Act (ADA) as was noted previously.

- Costs of construction have steadily increased since 2012.

- Transportation revenue has not kept up with inflation. (see Figure 8).

![Figure 6. Historical PQI and Total Treated Lane Miles](image)

Funding Sources

Funding for pavement maintenance typically comes from dedicated sources, including the state gas tax and voter-approved increases in the sales tax. These are used to fund all road-related expenses, not just pavement maintenance. They include operational needs, emergency repairs, complying with regulatory requirements, and maintaining, replacing, and modernizing aging infrastructure and equipment.

The City’s funding sources for pavement repairs come from a combination of federal, state, and local sources (see Figure 7). Each is briefly described in the following paragraphs.

Figure 7. Historical Funding for Pavement Resurfacing
Gas Tax (Highway Users Tax Account or HUTA)

California has a per-gallon excise tax on gasoline and diesel that is distributed to cities and counties using a formula based on population and mileage. The gas tax is restricted to specific transportation uses for public roads and associated facilities.

The gas tax has historically been the City’s single largest source of transportation funding. Until the recent action by the Legislature, the base excise tax of 18 cents per gallon (cpg) had not been raised for over 20 years, so its purchasing power has eroded by about half since 1994.

In 2010-11, the State implemented a complicated process where the sales tax on gasoline was eliminated in favor of a variable excise tax (the so-called “tax swap”), which made gas tax revenues even more volatile. This led to an overall decrease in gas tax revenues of nearly 40 percent over the last four years. The new state transportation package addresses this volatility and allows for inflation adjustments every three years.

Measure A Maintenance

Sacramento County has a voter-approved half-cent sales tax to fund transportation improvements such as transit and street maintenance. However, revenues are dependent on the strength of the economy as evidenced by the dramatic decline during the recession in 2009-2012. Since then, sales taxes have shown steady, but modest increases; barring any future economic downturns, Measure A revenues are expected to grow by about three percent annually through 2021.

Forecasts of future gas tax revenues are challenging, as they are highly dependent on oil prices and demand. Overall, the long-term expectation is that this will be a declining revenue source as more fuel efficient and alternative fuel vehicles comprise a larger portion of the vehicle fleet. Other sources of funding have increasingly bridged the gap.
Road Maintenance and Rehabilitation Account (RMRA)
In April 2017, the Governor signed the Road Repair and Accountability Act, a state transportation funding package that increases the gas tax, diesel tax, and vehicle registration fees. The new measure will index the gas tax to inflation so that its purchasing power will not be eroded as occurred with HUTA.

Half of the funding will be allocated to cities and counties through the Road Maintenance and Rehabilitation Account (RMRA); the City is expected to receive as much as $8.8 million annually beginning in FY 2018/19.

Federal Funding
Federal funding for rehabilitation is generally available through the Regional Surface Transportation Program (RSTP), the most flexible source of federal transportation funding. RSTP is allocated using a population-based formula to the region. In Sacramento, RSTP is distributed on a competitive grant application basis by the Sacramento Area Council of Governments (SACOG).

SACOG’s guidelines include funding for “Fix it First” projects, but they must compete with other capital transportation projects and include complete streets components in any request for roadway rehabilitation. Most City streets include these components already so federal funding for rehabilitation can only be used for streets that currently lack sidewalks or bicycle lanes. In most cases, this requires acquiring right of way or relocation of utility lines, so these efforts take longer and are usually three or four times costlier than pavement maintenance alone.

The City will continue to pursue these projects in the future; however, it is not possible to predict how much funding may be granted by SACOG for pavement maintenance alone.

Operating and Capital Expenditures
Operating Expenses
The City’s operating expenses include ongoing operations to maintain a transportation system used by hundreds of thousands of automobiles, trucks, cyclists, buses, and pedestrians daily. It includes labor, supplies, materials, equipment, and vehicles.

The Public Works Department is tasked with, among other responsibilities, planning, building, and maintaining transportation infrastructure, including roads, bridges, sidewalks, bikeways, streetlights, traffic signals, traffic control devices, street signs and markings, and providing for safety and accessibility, with over 250 employees assigned to these tasks. The costs of providing these services are fully offset with transportation funds and reimbursements from other sources.

RMRA is expected to provide as much as $8.8 million a year to Sacramento.

Complete Streets ensure that the entire roadway is designed and constructed with all users in mind – including bicyclists, public transportation vehicles and riders, and pedestrians of all ages and abilities.
Historically, about 70 percent of transportation funding has been used to maintain ongoing operations. With significant decreases in overall transportation funding over recent years, this percentage of dedicated transportation funds required just to maintain ongoing operations has been increasing, leaving less available for capital projects.

Capital Expenses

Investments in infrastructure or facilities that exceed $20,000 are included in the City’s Capital Improvement Program (CIP). The CIP is made of individual projects, each with its own budget established by funding type. Typically, the largest capital expenses are major transportation projects, most of which have federal funding.

Additional capital expenses, such as the Street and Bikeway Overlay and Seals Program are funded only after ongoing operation expenses have been fulfilled. Figure 8 illustrates the Department’s overall revenues and expenses, and as can be seen, operating expenses have continued to steadily increase (while overall revenue has stagnated or declined), to the point where little remains for the CIP and related programs. Without new revenues from RMRA, the City would cease to have any funding available for capital projects, including the Street and Bikeway Overlay Program.

![Revenues and Expenses ($M)](image)

Figure 8. Comparison of Department’s Revenues and Expenses (FY 2010 to 2022)
Another key point is shown in Figure 9 – when compared to its peers, the City of Sacramento is at the bottom of the list in terms of pavement funding per lane-mile. Although every city has its own characteristics that explain the different funding levels, (e.g. Seattle has mostly Portland cement concrete pavements in their arterials, which require a higher cost for repair, and San Francisco has passed bond measures for paving); nonetheless, it is difficult to escape the conclusion that Sacramento has not kept up with its peers in terms of paving expenditures.

Note that the data includes funding for pavement repairs only, i.e., seals, overlays, and reconstruction. Operational expenses are not included.

Sacramento is at the bottom of the list for pavement funding compared to its peers.

<table>
<thead>
<tr>
<th>City</th>
<th>Existing Funding</th>
<th>RMRA</th>
<th>Funding/Lane Mile</th>
</tr>
</thead>
<tbody>
<tr>
<td>San Francisco</td>
<td>$30,374</td>
<td></td>
<td></td>
</tr>
<tr>
<td>San Diego</td>
<td>$9,745</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seattle</td>
<td>$7,649</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bakersfield</td>
<td>$6,536</td>
<td></td>
<td></td>
</tr>
<tr>
<td>San Jose</td>
<td>$6,266</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fresno</td>
<td>$5,526</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Los Angeles</td>
<td>$4,722</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sacramento Co.</td>
<td>$2,941</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oakland</td>
<td>$1,879</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sacramento</td>
<td>$1,755</td>
<td>$1,755</td>
<td>$4,615</td>
</tr>
<tr>
<td>Stockton</td>
<td>$1,100</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* 2016 data except for City of Sacramento

Figure 9. Comparison of Paving Funding for Various Cities
Sacramento Tomorrow

Given the somewhat somber realities today, the Department faces significant challenges in the future, even with new RMRA funding. The pavement condition is, as noted, in “fair” condition and will continue to deteriorate very quickly. Three alternate funding scenarios were performed to determine potential outcomes.

Scenario 1: Current Funding Levels

The City’s recent budget called for the reduction and ultimate elimination of the roadway overlay program due to lack of funding by FY 21/22. Assuming that RMRA funding will add an additional $8.8 million per year beginning in FY 18/19, this is a total of $82.9 million over the next 10 years. Given this funding level, Figure 10 indicates that the following is predicted to occur by 2026:

1. The PCI will deteriorate to 51.
2. The current unfunded backlog ($179 million) will more than double to $426 million.
3. More than 40 percent of the street network will be in poor or very poor condition.
4. Without RMRA funding, the PCI will drop to 47 by 2026 and unfunded backlog will increase to $508 million.

Figure 10. Projected PCI and Unfunded Backlog with Current Funding
Scenario 2: Maintain Current Conditions (PCI = 66)

In order to maintain current conditions, i.e. PCI at 66, at least $278 million is required over the next 10 years. This is more than $19.5 million annually than what is currently available. However, the unfunded backlog will still increase to over $253 million (Figure 11).

Scenario 3: Improve Conditions (PCI = 75)

To improve the network condition to a PCI of 75 within 10 years, and maintain it at that level, it will require $502 million over the next 10 years. In addition, the unfunded backlog will be less than $50 million by 2026 (Figure 12).
Finally, Figure 13 shows the impacts on the street network by condition. Currently, over 81 percent of the network is in good or fair condition, with the remaining 19 percent in poor to very poor condition. Under the current funding levels, it is predicted that more than 40 percent will be in poor to very poor condition by 2026, an increase that is more than two-fold.

The other two funding scenarios result in marked improvements; Scenario 2 will result in less pavements in poor/very poor condition (14 percent), while Scenario 3 will result in less than 1 percent of pavements in this condition category by 2026.

Figure 13. Comparison of Network Condition by Funding Scenario
Conclusions

To summarize, the City of Sacramento has a substantial investment of over $1.7 billion in the street network. Overall, the street network is in “Fair” condition with a network PCI of 66. Over 81 percent of the streets currently fall into the “Fair” to “Good” condition categories.

The analyses indicate that the City needs approximately $50.2 million annually for pavement maintenance in order to improve the average PCI to 75. By doing so, streets can be maintained in good condition with ongoing preventive maintenance.

The City’s projected funding level (average of $8.3 million/year) will result in a decrease of the network PCI to 51 over the next 10 years and the unfunded backlog will increase from $179 million to $426 million by 2026. Even with the RMRA funding, there is insufficient funding to bring the City’s street network to a state of good repair.

Sacramento needs at least $50.2 million/year to improve the PCI to 75.

Finally, while the Department will continue to utilize newer technologies that offer more cost-savings, it will not be possible to bridge the gap between the $50.2 million/year that is needed and the $8.3 million/year available. It will become increasingly more challenging to meet the Department of Public Works’ mission and vision to “provide innovative and sustainable public infrastructure and services” and to “preserve and enhance the quality of life,” respectively.
Appendix A

PCI Maps for Council Districts
Pavement Condition Index (PCI)
Council District 1

City of Sacramento

Average PCI
Arterial
Collector
Residential

Excellent/Good
Fair
Poor
Very Poor

PCI ≥ 70
50 ≤ PCI < 70
25 ≤ PCI < 50
PCI < 25

Pavement Unfunded Backlog
$10.9 M

July 2017
Pavement Condition Index (PCI)
Council District 2

July 2017

City of Sacramento

Pavement Unfunded Backlog $33.1 M
City of Sacramento

Pavement Condition Index (PCI)
Council District 3

July 2017

Pavement Unfunded Backlog: $22.6 M

<table>
<thead>
<tr>
<th>District 3</th>
<th>Lane Miles</th>
<th>398</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average PCI</td>
<td>63</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Arterial</th>
<th>Collector</th>
<th>Residential</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCI</td>
<td>66</td>
<td>62</td>
<td>62</td>
</tr>
</tbody>
</table>

- Excellent/Good: PCI ≥ 70
- Fair: 50 ≤ PCI < 70
- Poor: 25 ≤ PCI < 50
- Very Poor: PCI < 25

Map shows various streets and roads within the City of Sacramento, with different colors indicating the condition index (PCI) for each road type.
Pavement Condition Index (PCI)

Council District 4

![City of Sacramento Map](image)

<table>
<thead>
<tr>
<th>District 4</th>
<th>Lane Miles</th>
<th>Average PCI</th>
<th>Arterial</th>
<th>Collector</th>
<th>Residential</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>406</td>
<td>69</td>
<td>69</td>
<td>68</td>
<td>69</td>
</tr>
</tbody>
</table>

Pavement Unfunded Backlog: **$22.5 M**

PCI Rating
- **Excellent/Good**: PCI ≥ 70
- **Fair**: 50 ≤ PCI < 70
- **Poor**: 25 ≤ PCI < 50
- **Very Poor**: PCI < 25

The map highlights the pavement condition within Council District 4, with a focus on the distribution of PCI ratings across different road types.
City of Sacramento

Pavement Condition Index (PCI)
Council District 5

July 2017

Sacramento, Yolo

Lane Miles
Average PCI
Arterial
Collector
Residential

Excellent/Good
Fair
Poor
Very Poor

PCI ≥ 70
50 ≤ PCI < 70
25 ≤ PCI < 50
PCI < 25

Pavement Unfunded Backlog

$25.3 M
City of Sacramento

Pavement Condition Index (PCI)
Council District 6

July 2017

District 6

<table>
<thead>
<tr>
<th>Category</th>
<th>Lane Miles</th>
<th>Average PCI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arterial</td>
<td>435</td>
<td>63</td>
</tr>
<tr>
<td>Collector</td>
<td>69</td>
<td>64</td>
</tr>
<tr>
<td>Residential</td>
<td>60</td>
<td></td>
</tr>
</tbody>
</table>

Pavement Unfunded Backlog $27.3 M

PCI Categorization:
- Excellent/Good: PCI ≥ 70
- Fair: 50 ≤ PCI < 70
- Poor: 25 ≤ PCI < 50
- Very Poor: PCI < 25

Legend:
- Excellent/Good (PCI ≥ 70)
- Fair (50 ≤ PCI < 70)
- Poor (25 ≤ PCI < 50)
- Very Poor (PCI < 25)
Pavement Condition Index (PCI) Council District 7

District 7

<table>
<thead>
<tr>
<th>Lane Category</th>
<th>Miles</th>
<th>Average PCI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arterial</td>
<td>323</td>
<td>64</td>
</tr>
<tr>
<td>Collector</td>
<td>64</td>
<td>70</td>
</tr>
<tr>
<td>Residential</td>
<td>61</td>
<td>70</td>
</tr>
</tbody>
</table>

Pavement Unfunded Backlog: $19.2 M

PCI Key:
- Excellent/Good: PCI ≥ 70
- Fair: 50 ≤ PCI < 70
- Poor: 25 ≤ PCI < 50
- Very Poor: PCI < 25

July 2017

City of Sacramento Department of Public Works
City of Sacramento

Pavement Condition Index (PCI) Council District 8

July 2017

District 8

<table>
<thead>
<tr>
<th>Category</th>
<th>Lane Miles</th>
<th>Average PCI</th>
<th>Arterial</th>
<th>Collector</th>
<th>Residential</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lane Miles</td>
<td>307</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average PCI</td>
<td>69</td>
<td></td>
<td>69</td>
<td>71</td>
<td>69</td>
</tr>
</tbody>
</table>

1% Excellent/Good (PCI ≥ 70)
12% Fair (50 ≤ PCI < 70)
37% Good (70 ≤ PCI < 70)
50% Poor (25 ≤ PCI < 50)
1% Very Poor (PCI < 25)

Pavement Unfunded Backlog $17.6 M