Survey Report

Raised Streets & Hollow Sidewalks
Sacramento, California

20 July 2009

Prepared for
City of Sacramento
Sacramento, CA

Prepared by
PAGE & TURNBULL, INC.
2401 C Street, Ste. B, Sacramento, California 95816
916.930.9903 / www.page-turnbull.com
Table of Contents

Introduction ... 1
 Project Objectives .. 1
 Project Area ... 1
 Project Team .. 2
 Acknowledgements .. 2

Research Design .. 3
 Methodology .. 3
 Access to Resources .. 3
 Excel Spreadsheet and GIS Mapping ... 5
 District Form ... 5

Historic Context Statement .. 7
 The Establishment of Sacramento ... 7
 Raising Sacramento's Streets .. 11
 Flood Control After the Raised Streets Project .. 15
 Character-Defining Features ... 16
 Condition of the Raised Streets and Hollow Sidewalks ... 21
 Other “Raised” Cities ... 22
 Significance ... 24

Architectural Survey (A Forms) .. 25

District Evaluation (D Form) .. 115

Recommendations .. 130

Bibliography ... 131

Appendix ... 134
 Maps ... 134
INTRODUCTION

PROJECT OBJECTIVES
The City of Sacramento received a Certified Local Government (CLG) grant from the State Office of Historic Preservation to survey and evaluate the raised streets and hollow sidewalks in downtown Sacramento. Several products were created to evaluate the eligibility of a potential historic district, including: this survey report; a historic context statement; an architectural survey with California Department of Parks and Recreation (DPR) 523 A form documentation; a spreadsheet listing character-defining features; GIS maps; and a District Record (DPR 523 D form). The Capital City Preservation Trust, a local not-for-profit organization, provided matching grant funding for the project.

While the raised streets and hollow sidewalks have generated a lot of interest in the City of Sacramento, the resources have not been comprehensively studied and evaluated as a potential historic district. This project evaluates the significance of the raised streets and hollow sidewalks within a broader historic context, identifies character-defining features of the resources and evaluates the integrity of the features. The survey report concludes with recommendations for next steps.

PROJECT AREA
The raised streets are the framework for the Raised Streets and Hollow Sidewalks Historic District. The District boundary represents the area in which the raised streets are visible and the hollow sidewalk segments remain. The District is bounded by Front Street on the west, I Street on the north, 13th Street on the east, and L Street on the south.
The boundary of the Raised Streets and Hollow Sidewalks Survey was based upon the map entitled, *Hollow Sidewalk Evaluation Study*, which was produced by structural engineer David Okaskai as part of the 1982 structural engineering report prepared by Barrish, Aldrich and Schroeter in which remaining raised streets and hollow sidewalks were studied. Researchers have created maps to depict which streets were raised between 1863 and 1876, but the boundaries are conflicting; the maps appear in the appendix of this report for reference. According to the 1982 Barrish, Aldrich and Schroeter report, 151 hollow sidewalk segments remained in Sacramento in 1982. Page & Turnbull’s architectural survey of the Raised Streets and Hollow Sidewalks was based on the boundary of that report. Verifying the extent of the raised area downtown was not included in the scope of this project. While it is likely that the raised downtown extends beyond the boundaries of the project area, additional research is necessary to determine the outermost boundaries of the raised area.

PROJECT TEAM

The Raised Streets and Hollow Sidewalks project was lead by Page & Turnbull. Ruth Todd, AICP, LEED, AP served as Principal-in-Charge, and Meg Glynn served as Project Manager. Gretchen Hilyard acted as database and GIS coordinator and Rebecca Fogel acted as mapping and graphics specialist. Kortny McCarter, a volunteer from California State University, Sacramento, assisted with the survey.

Paula Boghosian, from Historic Environment Consultants, prepared the historic context statement with assistance from associate, Don Cox.

ACKNOWLEDGEMENTS

Page & Turnbull would like to acknowledge the following individuals for their management and assistance with the Raised Streets and Hollow Sidewalks project:

Roberta Deering, City of Sacramento, Preservation Director
Kathleen Forrest, City of Sacramento, Project Manager
Josh Cannon, City of Sacramento, GIS Specialist, Development Services Department
Marie Nelson, Office of Historic Preservation
Fred Turner, Capital City Preservation Trust
RESEARCH DESIGN

METHODOLOGY
The goal of the project was to document the raised streets and hollow sidewalks and to evaluate the eligibility of a potential historic district. To make this evaluation, the following products were prepared:

- Historic Context Statement
- Primary Record Forms (DPR 523 A Forms)
- Excel Spreadsheet listing Character-Defining Features
- Geographical Information Systems Maps (GIS Maps)
- District Record Form (DPR 523 D Form)
- Survey Report

Historic Context Statement
Paula Boghosian of Historic Environmental Consultants prepared the Historic Context Statement. The purpose of the statement was to identify the broad themes and patterns associated with the raised streets and hollow sidewalks. It primarily addresses why and how Sacramento's downtown was raised and is based on records obtained from the Sacramento Archives and Museum Collection (SAAMC) and the Sacramento Room at the Sacramento Public Library. The historic context statement is included in this survey report.

Architectural Survey
Page & Turnbull led an architectural survey of the raised streets and hollow sidewalks within the identified project area. Although the resources surveyed were located below grade, the resources were comprised of buildings and street retaining walls, therefore they were addressed as architectural and engineering features rather than archaeological. The entire project area represents an area that has the potential to yield archeological information, but no disturbances or excavations were made during this survey. Page & Turnbull allocated a portion of the project fee to retain a qualified archaeologist in the event that archeological resources were encountered during the survey.

ACCESS TO RESOURCES
The Raised Streets and Hollow Sidewalks project area represents an urban cultural landscape because the City of Sacramento re-shaped the land to make the downtown habitable and more attractive to businesses. The raised streets and hollow sidewalks represent a cultural landscape; the raised streets are visible at grade and the hollow sidewalks are subterranean features. While it was possible to walk the expanse of the raised streets and note the character-defining features of the sidewalk surfaces and streetscape, not all of the remaining hollow sidewalk spaces were accessible.

The City of Sacramento was responsible for obtaining access to the hollow sidewalk segments for survey purposes. Letters with information regarding the raised streets and hollow sidewalks survey project were distributed to property owners within the project area in February of 2009. The City then contacted property owners via telephone to request access to the hollow sidewalk spaces accessible through their buildings. The City contacted and made appointments with forty (40) property owners. Through door-knocking, Page & Turnbull was able to access another nineteen (19) hollow sidewalk segments.

The hollow sidewalk spaces are accessible through the basements of adjacent buildings or through manholes in the sidewalks above. For the purpose of this reconnaissance architectural survey, the hollow sidewalks were only accessed through the basements of buildings in the project area; City of...
San Francisco planning staff provided photographs for the two hollow sidewalk segments located at Rosa Lima Park at the intersection of 7th and K streets, which were taken from Manhole 8. The City also provided photographs for the property at 700 K Street, which was not accessible for survey. Information for the two segments at 700 K Street was included in the database based on the photographs. Additionally, information for two hollow sidewalk segments at 1030 J Street and one segment at 1020 J Street were included in the database based on photographs taken by Historic Environmental Consultants for the Cathedral Square, Cultural Resources Supplementary Report, ADEIR. DPR 523 A Forms were prepared only for those resources accessed and surveyed by Page & Turnbull.

Survey Strategy

Based on previous newspaper articles and studies, preliminary character-defining features were identified for survey of the raised streets and hollow sidewalks project area. These features were organized in a table or checklist format. The table included columns for up to two hollow sidewalk segments so that the features of each space could be separately noted. For example, in the case where a corner property had two hollow sidewalk segments, both survey columns were completed. The table streamlined the survey process and is recommended for use by future surveyors.

At the street level, character-defining features included alleys which dipped from their intersection with streets to the original grade level; granite curbs; starred manhole covers; and sidewalk prism lights. Below grade, all six surfaces of the hollow sidewalk segments were surveyed: the street retaining walls; the structural system below the building (building wall); the ceiling; the flooring; and the end walls partitioning each end of the space. Character-defining features below grade included brick, barrel vault ceilings; brick, buttressed street retaining walls; and brick walls/piers below buildings. Penetrations in the ceiling such as sidewalk prism lights, elevator doors, and manholes were also noted.

The survey form identified the potential character-defining features by abbreviation. The abbreviations used follow:

<table>
<thead>
<tr>
<th>Abbreviations</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRK_PIERS</td>
<td>Building wall is supported by brick piers</td>
</tr>
<tr>
<td>BRK_WALL</td>
<td>Building wall is supported by brick wall</td>
</tr>
<tr>
<td>WALL_DOOR</td>
<td>Building wall contains door openings</td>
</tr>
<tr>
<td>WALL_WIN</td>
<td>Building wall contains window openings</td>
</tr>
<tr>
<td>CEIL_BRK_VAL</td>
<td>Sidewalk segment features a brick, vaulted ceiling</td>
</tr>
<tr>
<td>CEIL_CONC</td>
<td>Sidewalk segment features a concrete ceiling</td>
</tr>
<tr>
<td>RET_BUTTRSS</td>
<td>Street retaining wall is buttressed</td>
</tr>
<tr>
<td>FL_CONCRT</td>
<td>Concrete floor</td>
</tr>
<tr>
<td>FL_DIRT</td>
<td>Dirt floor</td>
</tr>
<tr>
<td>FL_OTHR</td>
<td>Other flooring present</td>
</tr>
<tr>
<td>SEG_END_WALL</td>
<td>Hollow sidewalk segment has end walls</td>
</tr>
<tr>
<td>SEG_END_OTHR</td>
<td>Hollow sidewalk segment is otherwise blocked at its ends</td>
</tr>
<tr>
<td>SEG_DIV</td>
<td>Hollow sidewalk segment is divided or partitioned</td>
</tr>
<tr>
<td>SDWLK_LGHTS</td>
<td>Sidewalk surface features prism sidewalk lights</td>
</tr>
<tr>
<td>SDWLK_ELEV</td>
<td>Sidewalk surface features an elevator door</td>
</tr>
<tr>
<td>SDWLK_GR_CURB</td>
<td>Sidewalk surface features granite curbs</td>
</tr>
<tr>
<td>STAR_MH</td>
<td>Sidewalk surface features a starred manhole cover</td>
</tr>
<tr>
<td>ALY_DIP</td>
<td>Alley dips to original grade level alongside building</td>
</tr>
</tbody>
</table>
The abbreviated features noted on the survey forms were transferred directly into the Raised Streets and Hollow Sidewalks Excel Spreadsheet. The information in the spreadsheet was sorted to determine the number of properties in which each type of character-defining feature remains.

EXCEL SPREADSHEET AND GIS MAPPING
The City of Sacramento requested that the data collected in the Raised Streets and Hollow Sidewalks project be integrated into the City’s existing GIS program. Josh Cannon, from the Department of Development Services, created a layer in GIS to represent the hollow sidewalk segments in downtown Sacramento. Because corner parcels featured two hollow sidewalks segments, the sidewalks were linked to the database through FID numbers, unique file identification numbers assigned to the parcels, rather than associated parcel numbers (APNs). The character-defining features noted on the survey forms were then input into the Excel spreadsheet. The data from the spreadsheet was linked to GIS to create the maps. Additional columns were added to the database to indicate whether the data resulted from Page & Turnbull’s survey, City photographs, or previous studies. The database displays whether a hollow sidewalk segment is hollow or filled; whether it has been surveyed and by whom; whether a DPR 523 A Form was prepared; what character-defining features were present; and what level of integrity remains. The Excel spreadsheet may easily be integrated into the City’s GIS program to inform Planning, Public Works, and other departments. A CD containing the Excel spreadsheet is enclosed with this report.

DISTRICT FORM
Formed by the City of Sacramento in response to chronic flooding, the raised streets and hollow sidewalks represent a cultural landscape: the land was intentionally shaped by raising the streets and constructing the hollow sidewalks to make it habitable. The Raised Streets and Hollow Sidewalks Historic District was, therefore, approached as a cultural landscape. The identified character-defining features describe the built landscape. According to the National Park Service, a cultural landscape is defined as, “a geographic area, associated with a historic event, activity, or person or exhibiting other cultural aesthetic values.” The National Park Service further defines a historic district as an area that “possesses a significant concentration, linkage, or continuity of sites, buildings, structures, or objects united historically or aesthetically by plan or physical development.” According to National Park Service definitions, the property’s combined character as a cultural landscape and historic district should not be separated when considering the property’s historical significance and potential for listing in the National Register of Historic Places.

Based on information in the Historic Context Statement and the identified broad themes and patterns, The Raised Streets and Hollow Sidewalks Historic District appears to be eligible for listing as a local historic district under Criterion C for architectural and engineering significance. The raised streets project reflects the political culture of the mid-19th century and also demonstrates why Sacramento was selected as the State Capital and the terminus of the transcontinental railroad: the city was particularly attractive to investors because it was willing to accommodate them. Rather than lose its bid as the State Capital or risk losing the railroad, Sacramento aggressively pursued the raised streets project to lessen flooding in the downtown and to improve the city’s drainage and infrastructure system. Additional research is recommended to determine the historic boundaries of the raised streets and hollow sidewalks. Architectural survey of the remaining hollow sidewalk segments that were not accessed during this survey is also advised.

Evaluation of the Raised Streets and Hollow Sidewalks for archeological discoveries was not part of the scope; therefore, National Register Criterion D or the potential to yield archeological data was not analyzed as part of District evaluation conducted by Page & Turnbull. The Raised Streets and Hollow Sidewalks Historic District is located in one of the oldest portions of Sacramento, however,

20 July 2009

Page & Turnbull, Inc.
and the entire project area qualifies as an area with the potential to yield archeological data. A report prepared by Tremaine & Associates, Inc. for the Sacramento Regional Transit District includes some archeological records for resources located within a portion of the Raised Streets and Hollow Sidewalks Historic District. Tremaine determined that the Raised Streets and Hollow Sidewalks Historic District was significant under Criterion D because it has potential to yield information “important to Sacramento’s prehistory and goldrush era camp life.”
HISTORIC CONTEXT STATEMENT

THE ESTABLISHMENT OF SACRAMENTO

John Sutter established the town of New Helvetia, the first permanent Euro-American settlement in the Sacramento Valley near the banks of the American River in 1839. Sutter constructed Sutter’s Fort between 1842 and 1844 on a high point above the confluence of the American and Sacramento rivers. Sutter owned more than 150,000 acres in the Central Valley. He ran a menagerie of enterprises, employing blacksmiths, carpenters, tanners, gunsmiths, vaqueros, farmers, gardeners, weavers, hunters, sawyers, sheep-herders, trappers, and later flour millwrights and a distiller. Sutter began establishing the city of Sutterville on a bluff adjacent the Sacramento River but John Marshall’s discovery of gold at Sutter’s sawmill in Coloma in 1848, disrupted his plans. An international Gold Rush ensued and overnight, the embarcadero at the confluence of the Sacramento and American rivers transformed into a major port where speculators disembarked on their way to mines north of the area. The port became known as Sacramento and despite seasonal flooding, the town’s proximity to the river caused it to quickly surpass Sutter’s Fort and Sutter’s planned community at Sutterville in population.

Sacramento grew dramatically and some buildings were erected in the course of a single week. Merchants changed their locations monthly to best position themselves to sell their merchandise to the arriving speculators. Business sold a variety of goods including tools, hardware, machinery, raw materials, clothing, and food. Stables, feed stores, leather stores, and blacksmiths were also located on major thoroughfares, like J Street, which led east in the direction of the gold mines. Whole wagon trains bound for the gold fields to the north were outfitted from stores along J Street.

At John Sutter Jr.’s request, Captain William H. Warner and his assistant, Lt. William Tecumseh Sherman, surveyed the City of Sacramento and laid a street grid in 1848. Streets running north-south were labeled with numbers, while those running east-west were labeled with letters. An alley running east-west bisected each city block, which contained a total of eight 80’ by 160’ lots. The exception to this pattern was a strip of larger blocks between 12th and 13th Streets, which held ten 80’ by 160’ lots. The terrain increased in elevation as it moved west, away from the river, but the land was somewhat bowl-shaped, with the area between I and L streets lower than that to the north and south. With a street grid platted and development of the town in full swing, the California State Legislature officially recognized Sacramento’s City Charter in 1850.

J Street served as a major thoroughfare leading from the Sacramento River to 12th Street, where routes branched north and east to the gold mines beyond the city. From the intersection of 12th and J streets, wagons either continued east to Hangtown (Placerville) and Coloma, or turned north toward Auburn and Marysville. Because J and K streets were the most heavily trafficked, businesses were first constructed on the city blocks lining these streets. Samuel Hensley and Pierson B. Reading constructed the first frame building in Sacramento at the intersection of Front and I streets. Shortly thereafter, merchant Samuel Brannan erected a frame store at Front and J streets. By 1850, the port of Sacramento was receiving two passenger ships a day. In 1852, Sacramento had a population of approximately 12,000. In response to devastating fires in 1849 and 1852, the City passed an ordinance in 1855 which mandated the construction of brick buildings in the business district. By 1856, the city had approximately 500 brick and 2,000 frame buildings. Sanborn maps from 1895 show that buildings in the business district generally ranged from one to three stories in height.
Incentive to Raise the Streets: The State Capitol and the Railroad

Sacramento’s early economy was fueled by capital investment and the city’s initial industry relied upon commerce. To ensure the security of their investments, businessmen encouraged the establishment of local government. Congress approved the Treaty of Guadalupe Hidalgo in 1848, which ended the Mexican-American war and made California a territory of the United States. Subsequently, in 1850, California was admitted as a free state to the Union. The Gold Rush had necessitated a stable government in Sacramento before that time, however, and in 1849, merchants created a simple government for Sacramento County which consisted of a sheriff and an alcalde (mayor). In August of that year, a territory-wide election was held to determine the members of Sacramento’s first city council and elect the city’s first mayor, Hardin Bigelow.

Sacramento served as the temporary State Capital in 1852, but it was in 1854 that the Senator Amos Parnall Catlin introduced a bill to permanently locate the State Capital in Sacramento. At the time, Sacramento had a new courthouse and offered the block bounded by I and J streets and 9th and 10th streets for the construction of a new state capitol building. Sacramento was attractive to legislators because of its lodging and transportation amenities—the city featured fifty-five hotels, plank roads, fourteen stages, and twenty-eight river steamers in 1854. Although the cities of San Francisco, Oakland, and San Jose competed to serve as the capital, and the floods of 1861-1862 delayed construction in Sacramento, work on the capitol building designed by Miner Frederick Butler began.
in June of 1863. The capitol would stand on state land bounded by L and N streets and 10th and 12th streets.

Shortly after the City of Sacramento became the state capital, the Sacramento Valley Railroad, one of the first railroads west of the Mississippi, opened in February 1856. The rail line ran twenty-two miles from the Sacramento Valley Railroad depot in Sacramento to Folsom, operating freight and passenger trains. The trains were instrumental in the transport of people and goods from Sacramento to Folsom, where stages and wagons provided transportation to the mines further north. In 1861, Sacramento merchants and entrepreneurs Leland Standford, Charles Crocker, Collis Huntington, and Mark Hopkins incorporated the Central Pacific Railroad. The first transcontinental railroad, the Central Pacific broke ground in Sacramento on January 8th, 1893.

The History of Flooding in Sacramento
Established at the confluence of the American and Sacramento rivers, the City of Sacramento was close to transportation and commerce on the river, but was also subject to natural and man-made flooding. The Sacramento Valley flooded each winter and spring due to the combination of rain and melted snow pack from the Cascade Mountain Range and Sierra Nevadas. Hydraulic mining along the river north of Sacramento eroded hillsides and deposited debris in the river which disrupted its natural flow and contributed to the frequency and severity of its flooding.

Shortly after Sacramento became a City, efforts were taken to protect it from flooding. Under Mayor Hardin Bigelow, the City of Sacramento and citizens jointly constructed Sacramento’s first levee. The levee paralleled Front Street and the Sacramento River on the west and paralleled the American River on the north from Sacramento to Brighton. When this levee failed in the flood of March 1852, larger levees were constructed, including one south of the city on R Street.
At this time, the U.S. Army Corps of Engineers began to study the flooding of the Sacramento and American rivers. The 1824 *Gibbons v. Ogden* U.S. Supreme Court case ruled that because the federal government had the power to regulate commerce, it also had a responsibility to maintain the navigability of the country’s waterways to ensure that they remained unobstructed for the operation of domestic and foreign commerce. The U.S. Army Corps of Engineers’ navigational studies and monitoring of the Sacramento River in 1855 fulfilled this federal obligation.

Despite these initial efforts at flood control, when the rivers rose in 1861-1862, the city flooded again. This time, the city was under water for three months because the levees prevented it from draining.

“Inundation of the State Capitol, City of Sacramento, 1862.” View of J Street (top) and K Street (bottom).
Lithograph originally published in San Francisco by A. Rosenfield.
Courtesy California State Library.
RAISING SACRAMENTO’S STREETS

In 1853, the Mayor and Common Council first discussed the possibility of leveling and raising the city streets by approximately four feet in areas of lower elevation to prevent flooding. Although there were mixed reactions to the plan, the process began that year. I, J, K, and L streets were raised. J, K, and L streets were raised from Front Street on the west to 9th Street on the east. I Street was similarly graded from Front Street on the west to 6th Street on the east. Redwood crosswalks were constructed between Front and 8th streets. It was an expensive process, but the City wished to maintain its status as the state capital and continue attracting development.

The winter of 1861-1862 brought the most destructive floods ever experienced in the City of Sacramento and spurred the federal, state, county and city governments to develop flood control measures in the Sacramento Valley. The U.S. Army Corps of Engineers undertook a project between 1864 and 1868 to redirect the American River and dredge it of mining debris. By straightening a curve in the American River and joining the American and Sacramento rivers approximately one mile above their original juncture, the Corps increased the flow of the river and decreased its likelihood of flooding. Dirt from the re-routing of the American River was used as fill for the City’s raised streets. Although unsuccessful, the California State Legislature attempted to coordinate levee building at the state and local levels at this time.

The County, which served as the governing body for both the City and County between 1858 and 1862 wanted to raise the levees around the city in response to the continued flooding, but the city wanted to raise the grade of the streets downtown. In 1863, The Board of Supervisors passed the Hite Ordinance, [151], named after the Supervisor that introduced it, which superseded previous ordinances and established a standard to elevate streets by eight to fourteen feet. Shortly thereafter, the County and City governments split into separate governing entities.

Between 1864 and 1868, the City of Sacramento raised the streets of its downtown by as much as fourteen feet to prevent flood waters from entering the low-lying downtown. Property owners were required to raise or add a story to their buildings in order meet the new level of the streets. In addition, property owners were responsible for building sidewalks that would bridge the gap between their buildings and the raised streets. Raising the streets increased downtown property values by fifty
to sixty percent, because the public gained confidence in the security and prosperity of the
downtown.

The Process of Raising the Streets
The City Board of Trustees developed the following process for the street improvements and used it
with later high grading activities:

1) The Board of Trustees gave ten days public notice prior to raising the grade of a street.
2) A majority of property owners on the block had to approve the Board’s petition to raise the
street.
3) A majority of property owners could also initiate a petition to raise the street on their block.
4) The City Surveyor estimated the amount of material needed to grade each block.
5) The Street Commissioner advertised for bids to fill the street. The lowest bid was usually
chosen and the contractor was paid from a ‘street fund’ created from the assessment of each
owner’s street frontage.
6) If a majority of owners of a block opposed raising the street, it would not be raised.
7) If the owner did not pay his assessment in time, a lien would be placed on the property.

In 1864, the Board of Trustees authorized proposals to fill Front Street south of I Street to high
grade. Since this work occurred adjacent to the railroad tracks, the Central Pacific may have
encouraged property owners along Front Street to request high grading since it widened the track
area and provide extra room for railroad operations. It was the re-grading of Front Street that served
as a catalyst for downtown owners to elevate the rest of the city to the high grade level specified in
the City’s ordinance. The City’s new elevation was to be level with the top of a hill where City Plaza
(Cesar Chavez Park) was located.

To contain the dirt fill, each property owner constructed a retaining wall along the edge of the street
in front of his property. To strengthen the retaining wall and keep it from collapsing toward the
building, brick bulwarks or buttresses, thicker at the bottom and tapering toward the top, were
installed against the wall at intervals ranging from four to six feet. Many of the brick walls themselves
also angled slightly toward the street to add additional strength.

Although most builders of the bulwarks and street retaining walls were private contractors who
responded to requests for bids published by the City, local prisoners were an additional source of
labor. The Street Commissioner was the designated Superintendent of the chain gangs and had the
authority to order sentenced prisoners to work on streets, alleys, and other places as directed. The
number of contractors who submitted bids to construct the street retaining walls increased from two
in 1864 to ten in 1865, and there was strong demand for more bricklayers and laborers.

As the streets were raised, sewers and water lines were also installed. Lines, made of brick or wood,
were three to five feet in diameter and were egg-shaped. Some corner properties contained brick,
cylindrical cistern-like structures underground that may have served as water reservoirs in case of fire.

Chronology of the Raised Streets
Property owners raised the streets on their blocks and constructed sidewalks as they were financially
able; therefore, sidewalk segments on a single block may be at the original grade or elevated. Stairs,
ladders and ramps were constructed between raised sidewalks and those which remained at the
original grade, creating a particularly hazardous streetscape, as one visitor describes in the Overland
Monthly:
“This work has entailed an immense outlay on the city... Various isolated buildings near these streets have lifted themselves up, and have a piece of pavement several feet higher than other people’s. Everybody here in Sacramento builds his pavement on a different level from that of his neighbor, if possible, and does not always drive down his nails well.”

The following is a chronological list of dates when various sections of streets were raised:

1864
The first high grade work was completed. Front Street was elevated from K to I streets; J Street was raised between Front and 2nd streets; and I Street was raised from Front to 5th streets.

1865
Work was completed on: L Street between Front and 2nd streets; K Street between Front and 3rd streets; and 2nd Street from I to L streets.

1866
The following sections of street were raised: 3rd Street between K and J streets; 4th Street between I and K streets; J Street between 3rd and 4th streets; and K Street between 3rd and 4th streets.

1867
Sections of street raised included: 3rd Street between I and J streets; 5th Street between I and J streets; 6th Street between I and J streets; and J Street between 4th and 6th streets.

1868
The following streets were raised: 4th Street between K and L streets; 5th Street between K and L streets; 6th Street between J and K streets; 7th Street between J and K streets; K Street between 4th and 10th streets; and J Street between 6th and 10th streets.

1869
Work was completed on the following street sections: I Street between 5th and 10th streets; 8th between I and K streets; and 9th and 10th streets between I and J streets.

The remaining area of low elevation was raised between 1871 and 1876. A map in the Appendices depicts when the streets were raised.

Paving
After the street fill settled, which often took a year, paving was applied. Wood planks, brick and concrete block did not prove durable as a street surface, so between 1863 and 1870 the City experimented with different paving materials. The blocks between 2nd and 4th streets on J Street were paved with brick surfaced with asphaltum, but the paving material was not durable. Around 1860, J Street was paved with Russ pavement, a type of concrete block surfacing and the road in front of the Central Pacific freight depot was macadamized, or covered with crushed granite, in early 1865. It was in 1865 that the City specified the use of Nicolson pavement for the streets.

Nicolson pavement was first installed on Front and 2nd Streets late in 1865. The paving was comprised of alternate 4”x4” and 4”x8” blocks of wood which were adhered to a base of thin wood planking with tar. Sand and then gravel were poured over the surface and tamped until level. Tar was then poured over the street surface. Nicholson pavement was used widely and in 1869 a similar pavement type called Stowe Foundation was also used. While Nicolson surfaces were at first preferred, 10 years later they were replaced by cobblestones which proved to be more durable.
The need to access the sub-grade water and sewer lines affected how the streets were surfaced. Although cobblestones were dirty, noisy, and hard on the hoofs of horses, they were laid on thoroughfares such as K Street because they were inexpensive and it was easier to remove them in order to make repairs to the sewer and water lines. K Street was comprised of a foot of sand topped with six to nine inch vertically laid cobblestones. Rammed and watered, it was topped with a thin layer of gravel. By the mid-1870s, it had become standard for the cobblestone streets to be surfaced with local pit-run sand and gravel.

Raising the Buildings

Property owners were responsible for raising their buildings to meet the new street level, which could either be done by adding a story to the top of the building or raising the building to the new level. Property owners who added stories to an existing structure created a basement level which often retained the doors, windows, and firedoors of the building’s original first story. The majority of merchants, however, raised their buildings with jacks and put new foundations and storerooms underneath them to maintain the main floor of the building at street level. Most elevated buildings were brick. It required hundreds of screw jacks to raise the larger buildings downtown; each jack had to be turned a little at a time to keep the building level and balanced as it was elevated. It took 250 jack screws and dozens of men to raise the St. George Hotel which stood at the intersection of Fourth and J streets and was 160’ long by 76’ wide and weighed approximately 1,900 tons. Some building owners raised their buildings with jacks and filled the space left below with earth.

Raising a building in downtown Sacramento, circa 1860s.
In presentation prepared by Brandon Spencer-Hartle.
FLOOD CONTROL AFTER THE RAISED STREETS PROJECT

By the time that the City had completed its project of raising the streets downtown, Governor William Irwin had created the Office of the State Engineer to investigate irrigation, drainage, and navigation of the state’s rivers. In 1880, State Engineer William Hammond Hall created the first integrated, comprehensive flood control plan for the Sacramento Valley which consisted of a system of levees, weirs, and bypass channels to protect urban centers. The flood control plan was largely prompted by a flood of the Sacramento Valley in 1878, but did not gain federal financial authorization until 1917 when Congress authorized the Sacramento Flood Control System.

In the mid-twentieth century, federal flood control efforts were renewed when Congress passed the Flood Control Act of 1944 and construction of the Folsom Dam was authorized. The U.S. Army Corps of Engineers completed the dam in 1956. Despite the presence of the dam, record floods occurred in 1956, 1964, and 1986, so the performance rating of the Folsom dam was downgraded from a 500-year storm to a 60-year storm. The City of Sacramento, the County of Sacramento, the County of Sutter, the American River Flood Control District and Reclamation District 1000 formed the Sacramento Area Flood Control Agency (SAFCA) in 1989 to provide the Sacramento region with increased flood protection along the American and Sacramento rivers. In the early 1990s, the U.S. Army Corps of Engineers constructed Sacramento area levee improvements along the Sacramento River from Verona to Freeport. SAFCA is instrumental in the certification of environmental documentation, the construction of levee improvements to protect North Sacramento and Natomas, and improvements to the levee along the American River. In 2008, construction began on the Folsom Dam Joint Federal Project, which would allow the dam to meet the 200-year flood performance rating.
CHARACTER-DEFINING FEATURES

Raised Streets/Alley Dips
The nature of Sacramento’s raised streets is apparent from the alleys downtown, which were not raised, but remained at the original grade level. In Old Sacramento, the raised streets are visible from the Firehouse Alley, which runs north-south through the city blocks, and downtown, the J/K Alley, which runs east-west through the city blocks, most clearly dips from the raised street level to the original grade. To a lesser extent, the I/J and K/L alleys also dip from the level of the elevated streets to Sacramento’s original grade. The dip from the raised street level to the original grade along alleys facilitated the delivery of goods and accommodated small stables and sheds. The raised streets and the new sewer system improved drainage greatly. The alleys still flooded at times, but were of secondary importance; by and large, activity could continue on the raised streets in the city.

Hollow Sidewalks
The hollow sidewalks were formed by six structural elements: the street retaining wall, the building wall, two end walls (which divide and partition the hollow sidewalk spaces), the ceiling, and the floor. Because of the utilitarian manner in which the sidewalks were constructed, the hollow sidewalk segments contain few unique or distinguishing characteristics; however, seven character-defining features were identified. Features include: the street retaining walls; brick piers or a brick wall below the building; thresholds, granite stairs, or other details; brick barrel vaulted ceilings; end walls; water tanks; and, on the surface level, sidewalk lights, elevator doors, starred manhole covers, and/or granite curbs.
The street retaining walls are character-defining features because they reveal that the hollow sidewalks resulted from the raising of the streets—which was accomplished by pouring fill between street retaining walls. The brick buttressed walls were typically thicker at the bottom and narrower at the top and buttresses supported the wall every four to six feet. To further strengthen the walls, some brick walls between the buttresses were angled slightly toward the street.
The brick system supporting the building also contributes to the character of a hollow sidewalk segment. Buildings that were raised are often supported by brick piers, while buildings to which a story was added feature the former first story facade of the building at basement level. Brick piers range from simple, rectangular or square shaped, utilitarian supports to narrow, wall-like supports with corbelled bases. Some brick piers feature corbelled brackets which may have supported iron I-beams or wood beams running below the sidewalk above. Buildings supported by the original building wall typically feature door and/or window openings, including openings that may have been bricked-in when additional stories were added. These window and door openings sometimes include wood or granite thresholds and/or metal covers that may have been installed to safeguard against fire.

Two types of structural systems were used to span between the street retaining wall and the building and support the sidewalk surface above. One was a wood post and beam framework system, while the other incorporated brick barrel vaults. The post and beam system was supported by the street retaining wall and by framework in or paralleling the building wall. Beams supporting the sidewalk were then covered with wood planks and surfaced with brick or cement to create a sidewalk above. The brick barrel vault system was comprised of shallow, arched brick barrel vaults that spanned between iron I-beams, which were spaced four to six feet apart and were supported by the street retaining wall and brick building wall or wood posts along the building wall. Wood planks or cement above the vaults formed the sidewalk surface. Tie rods were located at the base of each arch to hold the sides together with tension. Newer or reconstructed hollow sidewalk systems are comprised of reinforced concrete flat slabs which rest on concrete or encased steel beams which span from the street retaining wall to the building or to free-standing columns.

When the new sidewalks were completed, the hollow sidewalk spaces below were continuous; however, over time, the spaces were partitioned into smaller segments by walls that property owners constructed at the lot lines to secure the spaces from occupation or theft.
In some of the hollow sidewalk segments, notably those located at the corners of blocks, cylindrical, brick cisterns were present and likely held water to fight fires.
Finally, at the street level, many of the sidewalk surfaces were pierced by sidewalk lights, metal elevator doors, and manhole covers, or featured granite curbs at their edges. Sidewalk lights were comprised of glass block prisms, which, although opaque in appearance on the surface, angled light into the hollow sidewalk space below. The prism lights in Sacramento’s hollow sidewalks were manufactured in Chicago, Illinois. Metal elevator doors, installed flush with the sidewalk surface and operating like trapdoors, allowed access to the hollow sidewalk space from the street so that goods could be easily transferred to the building’s basement. It is not known when the manhole covers were installed in the sidewalks, but they appear to be made of steel and bear a distinctive starred detailing. They were likely installed as an early measure to access the water and sewer systems. Larger, modern manhole covers have since been installed as well. Lastly, some sidewalk segments feature granite curbing. Granite curbs most frequently appear at the juncture of alleys and streets. It is likely that the granite curbs were installed when the streets were raised and that the granite was transported from Folsom via the Sacramento Valley Railroad, because granite from Folsom was utilized in the construction of the State Capitol building in Sacramento.

Sidewalk prism lights, 715 7th Street.
Page & Turnbull, 2009.

Typical sidewalk features include starred manhole covers (left) and granite curbs (right).
Page & Turnbull, 2009.
CONDITION OF THE RAISED STREETS AND HOLLOW SIDEWALKS

The history of the hollow sidewalks was largely forgotten until 1959, when Marjorie Francisco wrote a research paper at California State College in Sacramento entitled “Raising of the Streets in the Sacramento Business District.” A second and better known research paper, entitled “Early Attempts to Save the Site of Sacramento by Raising its Business District,” was written by Barbara Lagomarsino in 1969 as her Masters thesis at the California State College in Sacramento. Francisco’s and Lagomarsino’s papers cited many of the same newspapers and City records.

In 1979, when Barbara Lagomarsino was Chair of the Sacramento Preservation Board, she conducted a short tour of sections of the underground sidewalks for members of the Board. In 1980, during the preparation of the City Survey of Non-Residential Buildings, additional underground areas were explored, and again during the demolition of buildings for new development on the current ‘Library Block, 8th - 9th, I – J Streets’.

In the 1970s, many of the raised streets and hollow sidewalks were demolished. Interstate 5 was constructed between 2nd and 3rd streets, bisecting Sacramento’s downtown and obliterating the existing street grid, including the associated sidewalk segments. In 1971, the Hahn Company developed a shopping mall along the K-Street corridor. Purchased by Westfield in 1998, the Westfield Downtown Plaza is roughly bound by 3rd Street on the west, J Street on the north, 7th Street on the east, and L Street on the south. Here the hollow sidewalks were also demolished for the construction of the mall.

Structural Analysis

In the 1980s, a number of hollow sidewalk segments remained; however, several were visibly stressed and some were experiencing minor structural failures. Sacramento structural engineers Barrish, Aldrich and Schroeter were hired to investigate the hollow sidewalks, determine their condition and develop repair schemes responsive to the various uses of the space. Their 1982 report entitled, Downtown Sacramento, “Hollow Sidewalks,” included descriptions of structural systems present in the hollow sidewalks and their condition. The report gives a brief history of the raised streets and hollow sidewalks, identifies the structural systems present in the hollow sidewalks, and describes their condition. Barrish, Aldrich and Schroeter note that while individual owners used various contractors to construct the hollow sidewalks, construction materials and methods were very similar.

“[The street retaining walls] occur directly under the street side curb and typically consist of horizontal brick arches, two wythes (8”) thick, spanning between buttresses. The buttress spacing varies between four and eight feet. … In some areas the arches are replaced by flat wall sections, also 8” thick brick and supported by buttresses. Floor slabs were not typically provided in the original construction but have been added in many areas. In quite a few areas, mass concrete has more recently been placed against the inside of the retaining walls to a depth of two or three feet.”

The beams supporting the sidewalks were supported by the street retaining walls and buildings walls in a few different ways. The building wall or columns were sometimes corbelled to produce a bracket or ledge on which the beams rested. Alternatively, building columns might be constructed in a T-shape which supported both the building and the sidewalk. And finally, a system comprised of cast iron brackets that projected from the brick building columns and supported a railroad tie was also used to span from the street retaining wall to the building. The cast iron brackets were especially susceptible to damage when the brick columns deteriorated.
The Barrish, Aldrich and Schroeter report describes the deteriorated state of the hollow sidewalks in 1982:

“Types and causes of brick, wrought iron and concrete deterioration are provided. The soft-fired “salmon” brick has eroded in some cases to half its original dimensions and much lime mortar has degenerated to a fluffy powder that lies in drifts along the bottom of walls beneath the joints. Some wrought iron beams have delaminated and corroded. Partial failure of the retaining walls/buttresses is visible in some areas with unevenness at the curb line and depressions in the street adjacent to the curb.”

In response to this and other structural analyses, the City required property owners to strengthen the most severely deteriorated hollow sidewalk structural systems. Repairs often necessitated the replacement of the original structural system. Many original brick barrel vaults were removed or covered at this time and sidewalk elevators and sidewalk lights were filled.

OTHER “RAISED” CITIES

Although unusual, Sacramento is not the first or only city to raise its streets in response to chronic flooding. In addition to those cities highlighted below, streets were raised on a smaller scale in: East St. Louis, Illinois; Ellinwood, Kansas; Leavenworth, Kansas; and Eureka Springs, Arizona.

Chicago, Illinois (1856)
In mid-19th-Century Chicago, drainage was so poor that the streets remained muddy and transportation across the city was dangerous and time consuming. In 1852, a drainage commission was formed to improve the City’s infrastructure. An engineer from Boston, Ellis S. Chesbrough solicited to head Chicago’s new Board of Sewerage Commissioners and design an underground sewer system. Between 1855 and 1856, the city council adopted resolutions to raise the grade of the city streets by four to fourteen feet to ensure proper drainage. Over the next twenty years, the streets were re-graded with mud and sand from the Chicago River bed and buildings were raised with jacks to meet the new street level. The City of Chicago was in charge of raising the streets and constructing hollow sidewalks to meet the new grade level; however, as in the City of Sacramento, individual property owners were responsible for raising their buildings to meet the streets and sidewalks. Not all buildings were raised—one remain below grade level—but larger buildings, particularly ones of brick construction, were raised with jacks. George M. Pullman, who later produced the Pullman sleeping car, initially made his fame raising buildings in Chicago. In 2001, nearly 2,000 hollow sidewalk segments remained in Chicago; however, the City has an Emergency Vaulted Sidewalk program to fill severely deteriorated hollow sidewalk segments.

Seattle, Washington (1890)
Located in western Washington on hilly land between Puget Sound and Lake Washington, the Seattle area was established in the 1850s. Although located on a natural harbor, which would become a principal port, the City was prone to seasonal flooding from melting snow pack in the Cascade Mountains. Shoreline development was also threatened by tidal flows which could cause Lake Washington to overflow. To combat flooding, the Duwamish River was straightened and channelized and tributaries were diverted. The U.S. Army Corps of Engineers constructed the Hiram Chittenden Locks in 1917 to facilitate boat navigation and to control the water levels of Lake Union and Lake Washington, the water level of which was subsequently lowered ten to twenty feet. Additionally, the Seattle General Construction Company filled the tidal lands with 24 million cubic yards of silt from the surrounding hills.
A movement began in 1876 to raise the streets of Seattle to protect it from flooding, but it did not occur on a large scale until the Seattle Fire of 1889. On June 6, 1889, fire destroyed 64 acres of Seattle’s central business district. As devastating as the fire was, it presented residents with the opportunity to undertake extensive infrastructure improvements including widened and re-graded streets, reconstructed wharves, and municipal water works. The City also mandated new construction to be of brick or steel. It was at this time that the streets in Seattle were raised by ten to thirty-two feet. The Seattle General Construction Company constructed street retaining walls of quarry stone or logs on either side of the roads and filled them with silt from the surrounding hills.

After the Seattle Fire of 1889, the city laid down reconstruction rules for the area but did not specify that new construction be built at the new grade level. Aggressive owners began to build at the original grade and within two weeks after the fire 138 buildings were under construction or completed, but sat partially below the new street level. Wooden sidewalks spanned from the raised streets to the second or even third floors of the buildings. Within two years of the fire, 3,500 buildings had been constructed in Seattle, many designed by architects. By 1897, this Pioneer Square area of the city had become a hub of great hotels, restaurants, and stores – the business, and commercial center of the Pacific Northwest.

Atlanta, Georgia (1920)
Atlanta’s raised streets were developed not in response to flooding, but to foster the City’s relationship with the railroad. In 1836, the state of Georgia chartered a railroad to transport its agricultural goods to markets and ports. The railroad ran 138 miles from Georgia to Chattanooga, Tennessee, and a settlement grew up around the southern terminus, which became the City of Atlanta. Georgia seceded from the Union in 1861 and the city became the supply depot for the Confederacy during the Civil War. The railroad center of the South, Atlanta was the prime target for General William T. Sherman’s Union troops. A month after Sherman’s siege began, Atlanta surrendered to Union troops. After the war, the city recovered and grew dramatically, many buildings were built and the railroad expanded its service along the eastern coast. An electric streetcar service was introduced in Atlanta in 1889. By 1900, Atlanta’s Union Station Depot served 100 trains a day and provided service to New York. By 1910, several iron bridges crossed the rail tracks at the depot. Local architect Haralson Bleckley proposed the construction of new raised concrete public plazas in lieu of the iron bridges above the railroad tracks. In the 1920s, his vision was realized when the streets were raised above the tracks to alleviate traffic problems. Buildings adjacent to the raised streets moved their operations to the second floor leaving the old fronts below for storage and other services.

In 1943, a park was built over the railroad gulch, and was replaced with a larger one in the 1960s called Peachtree Fountains Plaza. In 1968, the five block downtown area, containing original storefronts, with marble and granite archways, cast iron pilasters, decorative brickwork, and a variety of ornamental wood building forms was declared a historic site. In 1980, the area was closed due to the construction of a rapid transit line and other factors, but it was placed on the National Register by city leaders and later reopened.
SIGNIFICANCE

The raised streets and hollow sidewalks in Sacramento represent the City’s response to the chronic flooding of the downtown. This effort is particularly significant in the context of the flood control measures that the federal and state governments took simultaneously. The U.S. Army Corps of Engineers re-directed the American River and removed mining debris to increase its flow and both the state and county governments pursued the construction of levy systems, but the city government pursued the raised streets project downtown. The project reflects the political culture of the mid-19th century and also demonstrates why Sacramento was selected as the State Capital and the terminus of the transcontinental railroad: the city was particularly attractive to investors because it was willing to accommodate them. Rather than lose its bid as the State Capital or risk losing the railroad, Sacramento aggressively pursued the raised streets project to lessen flooding in the downtown and to improve the city’s drainage and infrastructure system.

The raised streets and hollow sidewalks project area represents an urban cultural landscape. The City of Sacramento raised the elevation of the downtown to make the City habitable and attractive to entrepreneurs. The raised streets serve as the framework of the cultural landscape and the resulting hollow sidewalk spaces support that framework. Through the raised streets and hollow sidewalk project, the natural landscape of downtown Sacramento was permanently altered. This engineering project conveys how early Sacramento developed.

Sacramento is not the first or only city to raise its streets. Chicago, which began to raise its streets in 1856, may have been the first to improve its infrastructure on the same scale. The raised streets program in Chicago is most similar to Sacramento’s project: streets were raised with dirt from the river, buildings were jacked up to meet the new elevation, and hollow sidewalks were constructed. The effort to raise the streets and sidewalks in Seattle, Washington, like that in Sacramento, was spurred by chronic flooding. The Seattle Fire of 1879 served as the catalyst for the project. Unlike the infrastructure projects in Chicago and Sacramento, buildings located below the grade of the raised streets resulted when overzealous builders constructed structures immediately after the fire, before the raised street project was completed. Like Sacramento, the federal and state governments simultaneously pursued flood control efforts in Seattle, including damming of the Duwamish River and filling parts of the bay. The resulting streetscape in Chicago, Sacramento, and Seattle is very similar.

The integrity of the raised streets and hollow sidewalks has been compromised by development. The Barrish, Aldrich and Schroeter structural survey in 1982 revealed that raised streets with hollow sidewalks remained in an area bound by Front Street on the west, I Street on the north, 13th Street on the east, and L Street on the south. Interstate 5 bisects the project area and the raised streets and hollow sidewalks were demolished when the Downtown Mall was constructed in 1971. The site of the Downtown Mall is roughly bounded by 3rd Street on the west, J Street on the north, 7th Street on the east, and L Street on the south. The raised streets remain visible from the alleys, which dip to the original grade level west of I-5 in Old Sacramento and east of I-5, downtown; however, the integrity of many of the remaining hollow sidewalks has been compromised.
ARCHITECTURAL SURVEY (A FORMS)

<table>
<thead>
<tr>
<th>APN</th>
<th>ADDRESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>00600120210000</td>
<td>910 2ND ST</td>
</tr>
<tr>
<td>00600710220000</td>
<td>1000 2ND ST</td>
</tr>
<tr>
<td>00600730400000</td>
<td>1009 2ND ST</td>
</tr>
<tr>
<td>00600730470000</td>
<td>1021 2ND ST</td>
</tr>
<tr>
<td>00600730450000</td>
<td>1023 2ND ST</td>
</tr>
<tr>
<td>00600710550000</td>
<td>1028 2ND ST</td>
</tr>
<tr>
<td>00600910010000</td>
<td>1007 6TH ST</td>
</tr>
<tr>
<td>00600940010000</td>
<td>1015 7TH ST</td>
</tr>
<tr>
<td>00601020160000</td>
<td>1125 9TH ST</td>
</tr>
<tr>
<td>00601010150000</td>
<td>1016-1020 10TH ST</td>
</tr>
<tr>
<td>00600470090000</td>
<td>924 12TH ST</td>
</tr>
<tr>
<td>00601110020000</td>
<td>1005 12TH ST</td>
</tr>
<tr>
<td>00600710350000</td>
<td>1013 FRONT ST</td>
</tr>
<tr>
<td>00600720250000</td>
<td>1121 FRONT ST</td>
</tr>
<tr>
<td>00600710330000</td>
<td>114 J ST</td>
</tr>
<tr>
<td>00600120310000</td>
<td>117 J ST</td>
</tr>
<tr>
<td>00600710450000</td>
<td>122 J ST</td>
</tr>
<tr>
<td>00600120290000</td>
<td>123 J ST</td>
</tr>
<tr>
<td>00600710270000</td>
<td>128 J ST</td>
</tr>
<tr>
<td>00600320120000</td>
<td>629 J ST</td>
</tr>
<tr>
<td>00600340140000</td>
<td>707 J ST</td>
</tr>
<tr>
<td>00600940040000</td>
<td>712 J ST</td>
</tr>
<tr>
<td>00600340100000</td>
<td>725 J ST</td>
</tr>
<tr>
<td>00600340080000</td>
<td>729-731 J ST</td>
</tr>
<tr>
<td>00601010030000</td>
<td>900 J ST</td>
</tr>
<tr>
<td>00601010060000</td>
<td>908 J ST</td>
</tr>
<tr>
<td>00601010070000</td>
<td>910 J ST</td>
</tr>
<tr>
<td>00601010100000</td>
<td>918 J ST</td>
</tr>
<tr>
<td>00601030020000</td>
<td>1000 J ST</td>
</tr>
<tr>
<td>00601030190000</td>
<td>1012 J ST</td>
</tr>
<tr>
<td>00601110030000</td>
<td>1208 J ST</td>
</tr>
<tr>
<td>00600710560000</td>
<td>111-113 K ST</td>
</tr>
<tr>
<td>00600710560000</td>
<td>115-119 K ST</td>
</tr>
<tr>
<td>00600720480000</td>
<td>116 K ST</td>
</tr>
<tr>
<td>00600720320000</td>
<td>126 K ST</td>
</tr>
<tr>
<td>00600960030000</td>
<td>704 K ST</td>
</tr>
<tr>
<td>00600960040000</td>
<td>708 K ST</td>
</tr>
<tr>
<td>00600960070000</td>
<td>718 K ST</td>
</tr>
<tr>
<td>00600960080000</td>
<td>724 K ST</td>
</tr>
<tr>
<td>00600960090000</td>
<td>726 K ST</td>
</tr>
<tr>
<td>00600960100000</td>
<td>730 K ST</td>
</tr>
<tr>
<td>00600970130000</td>
<td>801 K ST</td>
</tr>
<tr>
<td>00600970120000</td>
<td>831 K ST</td>
</tr>
<tr>
<td>00601030110000</td>
<td>1011-1013 K ST</td>
</tr>
</tbody>
</table>

--- RAISED STREETS
State of California — The Resources Agency
DEPARTMENT OF PARKS AND RECREATION
PRIMARY RECORD

Other Listings

Review Code Reviewer Date

Page 1 of 2

*Resource name(s) or number (assigned by recorder) 910 2nd Street, Hollow Sidewalk

P1. Other Identifier:

*P2. Location: ☐ Not for Publication ☑ Unrestricted *a. County: Sacramento

and (P2b and P2c or P2d. Attach a Location Map as necessary.)

*b. USGS 7.5' Quad: Sacramento West Date: 1998

c. Address: 910 2nd Street, Sacramento City: Sacramento Zip: 95814

d. UTM: Zone: __________ mE/ __________ mN (G.P.S.)

e. Other Locational Data: Assessor’s Parcel Number (Map, Block, Lot): 00600120210000

*P3a. Description: (Describe resource and its major elements. Include design, materials, condition, alterations, size, setting, and boundaries.)

The building at 910 2nd Street is located on the west side of 2nd Street, between J and I streets, and contains one hollow sidewalk segment. The 910 2nd Street hollow sidewalk segment currently houses restrooms, a storage area, and an office. The hollow sidewalk segment parallels 2nd Street and features brick building walls that support the 910 2nd Street building on the west and drywall finished street retaining walls on the east. The brick building walls feature door openings reinforced by steel straps under the lintels. The hollow sidewalk segment is enclosed on its north and south ends by drywall finished walls. The hollow sidewalk segment features linoleum tile flooring and a ceiling finished with concrete plaster.

*P3b. Resource Attributes: (list attributes and codes) HP39. Other

*P4. Resources Present: ☑ Building ☑ Structure ☐ Object ☑ Site ☐ District ☐ Element of District ☐ Other

P5b. Photo: (view and date)

Looking east at the hollow sidewalk segment 04/2009

*P6. Date Constructed/Age and Sources: ☑ Historic 1865

HEC, 2009.

*P7. Owner and Address:

William H Markley
Revocable Trust et al
2807 Sheridan Way
Sacramento, CA 95821

*P8. Recorded by:

Page & Turnbull, Inc. (MEG)
2401 C Street, Ste. B
Sacramento, CA 95816

*P9. Date Recorded:

05/27/2009

P10. Survey Type:

*P11. Report Citation: (Cite survey report and other sources, or enter "none") Raised Streets and Hollow Sidewalks Survey Report

*Attachments: ☑ None ☐ Location Map ☑ Sketch Map ☑ Continuation Sheet ☑ Building, Structure, and Object Record ☑ Archaeological Record ☑ District Record ☑ Linear Feature Record ☑ Milling Station Record ☑ Rock Art Record ☑ Artifact Record ☑ Photograph Record ☐ Other (list)

DPR 523A (1/95)

*Required information
Looking west at the brick building walls supporting the 910 2nd Street building (Page & Turnbull, 04/2009)

Hollow sidewalk segment, looking northeast (Page & Turnbull, 04/2009)
The building at 1000 2nd Street is located on the southwest corner of the intersection of 2nd and J streets and contains two segments of hollow sidewalks. The 1000 2nd Street hollow sidewalk segments are not currently utilized. The northern hollow sidewalk segment parallels J Street and features brick walls that support the 1000 2nd Street building on the south and butressed brick street retaining walls on the north. This hollow sidewalk segment is enclosed by a brick wall at its west end. The eastern hollow sidewalk segment parallels 2nd Street. Brick and poured concrete walls support the 1000 2nd Street building on the west side of the sidewalk and a buttressed brick street retaining wall with a corbelled base supports the sidewalk on the east. The west wall that supports the building features an arched doorway and rectangular door and window openings. The south end of the segment terminates in a brick wall. Both hollow sidewalk segments feature dirt flooring and a concrete slab ceiling.

*P3a. **Description:** (Describe resource and its major elements. Include design, materials, condition, alterations, size, setting, and boundaries.)

The building at 1000 2nd Street is located on the southwest corner of the intersection of 2nd and J streets and contains two segments of hollow sidewalks. The 1000 2nd Street hollow sidewalk segments are not currently utilized. The northern hollow sidewalk segment parallels J Street and features brick walls that support the 1000 2nd Street building on the south and butressed brick street retaining walls on the north. This hollow sidewalk segment is enclosed by a brick wall at its west end. The eastern hollow sidewalk segment parallels 2nd Street. Brick and poured concrete walls support the 1000 2nd Street building on the west side of the sidewalk and a buttressed brick street retaining wall with a corbelled base supports the sidewalk on the east. The west wall that supports the building features an arched doorway and rectangular door and window openings. The south end of the segment terminates in a brick wall. Both hollow sidewalk segments feature dirt flooring and a concrete slab ceiling.

*P6. **Date Constructed/Age and Sources:**

1865

HEC, 2009.

*P7. **Owner and Address:**

State of California
P.O. Box 63931
San Francisco, CA

*P8. **Recorded by:**

Page & Turnbull, Inc. (MEG)
2401 C Street, Ste. B
Sacramento, CA 95816

*P9. **Date Recorded:**

05/27/2009

*P10. **Survey Type:**

Reconnaissance

*P11. **Report Citation:** (Cite survey report and other sources, or enter “none”)
Raised Streets and Hollow Sidewalks Survey Report
West side of brick building wall supporting 1002 2nd Street (Page & Turnbull, 03/2009)

Northeast corner where two hollow sidewalk segments meet (Page & Turnbull, 03/2009)
The building at 1009 2nd Street is located on the west side of 2nd Street and contains one hollow sidewalk segment. The 1009 2nd Street hollow sidewalk segment parallels 2nd Street and is not currently utilized. Concrete piers and a brick wall support the 1009 2nd Street building on the east, with a brick, buttressed street retaining wall on the east. There are door openings in the eastern brick wall, including an arched opening that has been infilled with concrete block. The hollow sidewalk segment contains a bathroom at its south end and the segment terminates in concrete block end walls on the north and south. The hollow sidewalk segment features concrete flooring and a concrete slab ceiling.

*P3b. Resource Attributes: (list attributes and codes) HP39. Other

*P4. Resources Present: □ Building □ Structure □ Object □ Site □ District □ Element of District □ Other

P5b. Photo: (view and date) Hollow sidewalk segment, looking northwest

04/2009

*P6. Date Constructed/Age and Sources: □ Historic

1865

HEC, 2009.

*P7. Owner and Address:

Nissim Lanyadoo
P.O. Box 470277
San Francisco, CA

*P8. Recorded by:

Page & Turnbull, Inc. (MEG)
2401 C Street, Ste. B
Sacramento, CA 95816

*P9. Date Recorded:

05/25/2009

*P10. Survey Type:

Reconnaissance

*P11. Report Citation: (Cite survey report and other sources, or enter “none”) Raised Streets and Hollow Sidewalks Survey Report

*Attachments: □ None □ Location Map □ Sketch Map □ Continuation Sheet □ Building, Structure, and Object Record □ Archaeological Record □ District Record □ Linear Feature Record □ Milling Station Record □ Rock Art Record □ Artifact Record □ Photograph Record □ Other (list)

DPR 523A (1/95)
<table>
<thead>
<tr>
<th>Resource Name or # (Assigned by recorder)</th>
<th>1009 2nd Street, Hollow Sidewalk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recorded by:</td>
<td>Page & Turnbull</td>
</tr>
<tr>
<td>Date</td>
<td>05/25/2009</td>
</tr>
<tr>
<td></td>
<td>Continuation</td>
</tr>
</tbody>
</table>

Concrete block end wall (at left) and brick building wall (at right), looking northeast (Page & Turnbull, 04/2009)

From inside the basement of 1009 2nd Street, looking at the hollow sidewalk segment, looking northwest (Page & Turnbull, 04/2009)
P1. Other Identifier:

*P2. Location:
- Not for Publication
- Unrestricted
- Sacramento
- 1021 2nd Street, Sacramento
- Sacramento West
- 1998
- 2nd Street, Sacramento
- Sacramento
- 1021 2nd Street, Sacramento
- Sacramento West

*P3a. Description:
The building at 1021 2nd Street is located on the east side of 2nd Street, between J and K streets, and features one hollow sidewalk segment. The 1021 2nd Street hollow sidewalk segment parallels 2nd Street and currently houses a maintenance office and storage area. A concrete block wall supports the 1021 K Street building on the west, with a poured concrete street retaining wall on the east. A steel frame partition wall clad in drywall divides the segment into two rooms. The hollow sidewalk segment terminates in concrete block end walls on the north and south. The hollow sidewalk segment features concrete flooring and a concrete slab ceiling. Poured concrete columns, located at regular intervals down the length of the space, support the ceiling.

*P3b. Resource Attributes:
- HP39. Other

*P4. Resources Present:
- Building
- Structure
- Object
- Site
- District
- Element of District
- Other

P5b. Photo:
- Hollow sidewalk segment, looking east
- 02/2009

*P6. Date Constructed/Age and Sources:
- Historic
- 1865
- HEC, 2009.

*P7. Owner and Address:
- David R Meeker & Entezari A Hossein
- 815 27th Street
- Sacramento, CA 95816

*P8. Recorded by:
- Page & Turnbull, Inc. (MEG)
- 2401 C Street, Ste. B
- Sacramento, CA 95816

*P9. Date Recorded:
- 05/25/2009

*P10. Survey Type:
- Reconnaissance

*P11. Report Citation:
- Raised Streets and Hollow Sidewalks Survey Report

*Attachments:
- None
- Location Map
- Sketch Map
- Continuation Sheet
- Building, Structure, and Object Record
- Archaeological Record
- District Record
- Linear Feature Record
- Milling Station Record
- Rock Art Record
- Artifact Record
- Photograph Record
- Other (list)

DPR 523A (1/95)

*Required information
<table>
<thead>
<tr>
<th>Resource Name or # (Assigned by recorder)</th>
<th>1021 2nd Street, Hollow Sidewalk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recorded by</td>
<td>Page & Turnbull</td>
</tr>
<tr>
<td>Date</td>
<td>05/25/2009</td>
</tr>
<tr>
<td>Continuation</td>
<td>[x]</td>
</tr>
<tr>
<td>Update</td>
<td>[]</td>
</tr>
</tbody>
</table>

- Poured concrete street retaining wall, looking west (Page & Turnbull, 02/2009)

- Looking north at the concrete block end wall (Page & Turnbull, 02/2009)
The building at 1023 2nd Street is located on the east side of 2nd Street, between K and J streets, and contains one hollow sidewalk segment. The 1023 2nd Street hollow sidewalk segment parallels 2nd Street and currently functions as a storage area. Concrete columns support the 1023 K Street building on the east, and a brick buttressed street retaining wall supports the sidewalk on the west. The north and south end walls of the hollow sidewalk segment were not visible. The hollow sidewalk segment features a concrete floor and a concrete slab ceiling.
Poured concrete floor and concrete column (Page & Turnbull, 04/2009)

Wood plank sidewalk surface above hollow sidewalk segment, looking east (Page & Turnbull, 04/2009)
The building at 1028 2nd Street is located on the northwest corner of the intersection of K and 2nd streets and features two hollow sidewalk segments that wrap the corner in an L-shaped plan. The 1028 2nd Street hollow sidewalk currently houses a tattoo shop. The eastern hollow sidewalk segment parallels 2nd Street and the southern segment parallels K Street. The segments feature brick building walls that support the 1028 2nd Street building on the west and north. The brick building walls contain door and window openings surmounted by brick lintels. On the east and south, the sidewalk is supported by butressed brick street retaining walls. The hollow sidewalk segment terminates at its north and west ends in drywall finished walls. Both hollow sidewalk segments feature tiled floors and concrete plaster finished ceilings.

Description:

The building at 1028 2nd Street is located on the northwest corner of the intersection of K and 2nd streets and features two hollow sidewalk segments that wrap the corner in an L-shaped plan. The 1028 2nd Street hollow sidewalk currently houses a tattoo shop. The eastern hollow sidewalk segment parallels 2nd Street and the southern segment parallels K Street. The segments feature brick building walls that support the 1028 2nd Street building on the west and north. The brick building walls contain door and window openings surmounted by brick lintels. On the east and south, the sidewalk is supported by butressed brick street retaining walls. The hollow sidewalk segment terminates at its north and west ends in drywall finished walls. Both hollow sidewalk segments feature tiled floors and concrete plaster finished ceilings.

Other Attributes:

- **Historic:**
 - 1865
 - HEC, 2009.

Owner and Address:

- Youssry Y Kelada
 - P.O. Box 2577
 - Granite Bay, CA

Recorded by:

- Page & Turnbull, Inc. (MEG)
 - 2401 C Street, Ste. B
 - Sacramento, CA 95816

Date Recorded:

- 05/25/2009

Survey Type:

- Reconnaissance

Report Citation:

- Raised Streets and Hollow Sidewalks Survey Report

Attachments:

- Building, Structure, and Object Record
- Archaeological Record
- District Record
- Milling Station Record
- Rock Art Record
- Photograph Record
- Other (list)

DPR 523A (1/95)

Required information
Western hollow sidewalk segment, looking north (Page & Turnbull, 04/2009)

Southern hollow sidewalk segment, looking east (Page & Turnbull, 04/2009)
P1. Other Identifier:
- Not for Publication
- Unrestricted

a. County: Sacramento
- Address: 1007 6th Street, Sacramento
- Date: 1998
- USGS 7.5' Quad: Sacramento East
- City: Sacramento
- Zip: 95814
- Location Map as necessary.
- UTM: Zone: mE/ mN (G.P.S.)
- Address: 1007 6th Street, Sacramento
- City: Sacramento
- Zip: 95814

P3a. Description: (Describe resource and its major elements. Include design, materials, condition, alterations, size, setting, and boundaries.)
The building at 1007 6th Street is located on the southeast corner of the intersection of 6th and J streets and contains two segments of hollow sidewalks. The 1007 6th Street hollow sidewalk segments are not currently utilized. The northern hollow sidewalk segment parallels J Street and features concrete piers and walls clad in drywall that support the 1007 6th Street building on the south, and brick, butressed street retaining walls on the north. This hollow sidewalk segment is broken into two spaces divided by a concrete block partition wall. The eastern end of the segment is enclosed by a brick end wall. The western hollow sidewalk segment parallels 6th Street. Concrete piers and drywall clad walls support the 1007 6th Street building on the east side of the sidewalk and a brick, butressed street retaining wall supports the sidewalk on the west. The south end of the western segment terminates in a brick and hollow clay tile end wall. Both hollow sidewalk segments feature concrete flooring and a concrete slab ceiling.

P3b. Resource Attributes: (list attributes and codes) HP39. Other

P4. Resources Present:
- Building
- Structure
- Object
- Site
- District
- Element of District
- Other

P5b. Photo: (view and date)
- Western segment, concrete building wall, looking south
- 03/2009

P6. Date Constructed/Age and Sources:
- Historic
- 1868
- HEC, 2009.

P7. Owner and Address:
- Church Scientology Sacramento
- 825 15th Street
- Sacramento, CA 95814

P8. Recorded by:
- Page & Turnbull, Inc. (MEG)
- 2401 C Street, Ste. B
- Sacramento, CA 95816

P9. Date Recorded:
- 05/20/2009

P10. Survey Type:
- Reconnaissance

P11. Report Citation: (Cite survey report and other sources, or enter “none”)
- Raised Streets and Hollow Sidewalks Survey Report

*Attachments:
- None
- Location Map
- Sketch Map
- Continuation Sheet
- Building, Structure, and Object Record
- Archaeological Record
- District Record
- Linear Feature Record
- Milling Station Record
- Rock Art Record
- Artifact Record
- Photograph Record
- Other (list)

*Required information
Western segment, south brick end wall, looking southeast (Page & Turnbull, 03/2009)

Exterior sidewalk surface above western segment, looking south from J Street (Page & Turnbull, 03/2009)
The building at 1015 7th Street is located on the northeast corner of the intersection of 7th and Merchant Streets and features two segments of hollow sidewalks. The southern hollow sidewalk segment, which parallels Merchant Street, is not utilized, and the western hollow sidewalk segment, which parallels 7th Street, currently houses a conference room and office space. The southern hollow sidewalk segment features concrete piers that support the 1015 7th Street building on the south and poured concrete street retaining walls on the north. This hollow sidewalk segment is enclosed at its west end by a poured concrete end wall; the east end wall was not visible. The western hollow sidewalk segment is supported by the 1015 7th Street building walls on the east and street retaining walls finished with drywall on the west. The segment terminates at the south in a drywall clad wall and in the north in a wall finished with wood paneling. The southern hollow sidewalk segment features concrete flooring and a concrete slab ceiling. The western segment is carpeted and features a drop ceiling. At street level, a granite curb at the corner of 9th and J Streets is located above the hollow sidewalk segment.

P3a. Description: (Describe resource and its major elements. Include design, materials, condition, alterations, size, setting, and boundaries.)

The building at 1015 7th Street is located on the northeast corner of the intersection of 7th and Merchant Streets and features two segments of hollow sidewalks. The southern hollow sidewalk segment, which parallels Merchant Street, is not utilized, and the western hollow sidewalk segment, which parallels 7th Street, currently houses a conference room and office space. The southern hollow sidewalk segment features concrete piers that support the 1015 7th Street building on the south and poured concrete street retaining walls on the north. This hollow sidewalk segment is enclosed at its west end by a poured concrete end wall; the east end wall was not visible. The western hollow sidewalk segment is supported by the 1015 7th Street building walls on the east and street retaining walls finished with drywall on the west. The segment terminates at the south in a drywall clad wall and in the north in a wall finished with wood paneling. The southern hollow sidewalk segment features concrete flooring and a concrete slab ceiling. The western segment is carpeted and features a drop ceiling. At street level, a granite curb at the corner of 9th and J Streets is located above the hollow sidewalk segment.

P3b. Resource Attributes: (list attributes and codes) HP39. Other

P4. Resources Present:

- Building
- Structure
- Object
- Site
- District
- Element of District
- Other

P5b. Photo: (view and date)

Southern segment, brick piers, looking south and up

05/2009

P6. Date Constructed/Age and Sources: Historic

1868

HEC, 2009.

P7. Owner and Address:

Merchants National Bank

P.O. Box 747

Sacramento, CA 95815

P8. Recorded by:

Page & Turnbull, Inc. (MEG)

2401 C Street, Ste. B

Sacramento, CA 95816

P9. Date Recorded:

05/21/2009

P10. Survey Type:

Reconnaissance

P11. Report Citation: (Cite survey report and other sources, or enter “none”) Raised Streets and Hollow Sidewalks Survey Report

Attachments:

- None
- Location Map
- Sketch Map
- Continuation Sheet
- Building, Structure, and Object Record
- Archaeological Record
- District Record
- Linear Feature Record
- Milling Station Record
- Rock Art Record
- Artifact Record
- Photograph Record
- Other (list)

DPR 523A (1/95)
Continuation Sheet

<table>
<thead>
<tr>
<th>Page</th>
<th>2 of 2</th>
<th>Resource Name or # (Assigned by recorder)</th>
<th>1015 7th Street, Hollow Sidewalk</th>
</tr>
</thead>
</table>
| Recorded by: | Page & Turnbull | Date | 05/21/2009 | Continuation

Western segment, containing conference room, looking southwest (Page & Turnbull, 05/09)

Granite curb, intersection of 7th and Merchant Streets (Page & Turnbull, 05/09)
The building at 1125 9th Street is located on the southeast corner of the intersection of 9th and J streets and features two segments of hollow sidewalks. The 1125 9th Street hollow sidewalk segments are not currently utilized. The southern hollow sidewalk segment parallels L Street and the western segment parallels 9th Street. Both hollow sidewalk segments feature concrete parged brick piers that support the 1125 9th Street building on the north and east, respectively, and poured concrete street retaining walls on the south and west, respectively. Wood frame partitions with door openings and wood panel doors fill the spaces between several of the concrete piers which support the 1125 9th Street building in both the southern and western segments. Both hollow sidewalk segments terminate in poured concrete walls, feature concrete floors, and have concrete slab ceilings. Sidewalk prism lights provide light to the hollow sidewalk spaces from the exterior.
Southern segment, street retaining wall, looking south (Page & Turnbull, 03/2009)

Western segment, wood frame partition with wood panel door between concrete piers, looking east (Page & Turnbull, 03/2009)
State of California — The Resources Agency
DEPARTMENT OF PARKS AND RECREATION
PRIMARY RECORD

<table>
<thead>
<tr>
<th>Other Listings</th>
<th>Review Code</th>
<th>Reviewer</th>
<th>Date</th>
</tr>
</thead>
</table>

Page 1 of 2

*Resource name(s) or number (assigned by recorder): 1016-1020 10th Street, Hollow Sidewalk

P1. Other Identifier:

*P2. Location:
- Not for Publication ☑ Unrestricted
- (P2b and P2c or P2d. Attach a Location Map as necessary.)

 a. County: Sacramento

 b. USGS 7.5' Quad: Sacramento East
 c. Address: 1016-1020 10th Street, Sacramento
 City: Sacramento
 Zip: 95814

 d. UTM: Zone: ___________________________ mE/
 mN (G.P.S.)

 e. Other Locational Data: Assessor’s Parcel Number (Map, Block, Lot): 00601010150000

P3a. Description: (Describe resource and its major elements. Include design, materials, condition, alterations, size, setting, and boundaries.)

The building at 1016-1020 10th Street is located on the west side of 10th Street, between K Street and the J/K Alley, and features one hollow sidewalk segment that parallels 10th Street. The hollow sidewalk segment is not currently utilized. It features a wood and steel support system supporting the 1016-1020 10th Street building on the west and a poured concrete street retaining wall on the east. The hollow sidewalk segment is enclosed at its north and south ends by poured concrete end walls, features concrete flooring, and a concrete ceiling. The J/K Alley at the northern edge of the property does not feature hollow sidewalks. The building’s northern wall is comprised of brick and poured concrete.

P3b. Resource Attributes: (list attributes and codes)
- HP39. Other

P4. Resources Present:
- Building ☒ Structure
- Object
- Site
- District
- Element of District
- Other

P5b. Photo: (view and date)
1016-1020 10th Street hollow sidewalk segment, looking south
03/2009

P6. Date Constructed/Age and Sources:
- Historic 1871-1876
- HEC, 2009.

P7. Owner and Address:
- Herbert K/Inez F Yee
- Revocable Trust
- 1301 Normandy Lane
- Sacramento, CA 95822

P8. Recorded by:
- Page & Turnbull, Inc. (MEG)
- 2401 C Street, Ste. B
- Sacramento, CA 95816

P9. Date Recorded:
05/25/2009

P10. Survey Type:
- Reconnaissance

P11. Report Citation: (Cite survey report and other sources, or enter “none”)
- Raised Streets and Hollow Sidewalks Survey Report

*Attachments:
- None
- Location Map
- Sketch Map ☒ Continuation Sheet
- Building, Structure, and Object Record
- Archaeological Record
- District Record
- Linear Feature Record
- Milling Station Record
- Rock Art Record
- Artifact Record
- Photograph Record
- Other (list)

DPR 523A (1/95)

*Required information
<table>
<thead>
<tr>
<th>Resource Name or # (Assigned by recorder)</th>
<th>1016-1020 10th Street, Hollow Sidewalk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recorded by</td>
<td>Page & Turnbull</td>
</tr>
<tr>
<td>Date</td>
<td>05/25/2009</td>
</tr>
<tr>
<td></td>
<td>☑ Continuation</td>
</tr>
</tbody>
</table>

- **Detail of ceiling, showing infilled skylight (Page & Turnbull, 03/2009)**
- **Looking east (Page & Turnbull, 03/2009)**
The building at 924 12th Street is located on the northeast corner of the intersection of 11th and J streets and contains two segments of hollow sidewalks; only the southern hollow sidewalk segment was accessible for survey and currently functions as a storage area. The southern hollow sidewalk segment parallels J Street. It is supported by a poured concrete partition wall which bisects the segment and is supported by poured concrete street retaining walls on the south. The concrete wall is pierced by an opening with a flush, metal door. A poured concrete wall and a hollow clay tile wall support the hollow sidewalk segment on its west and east ends, respectively. The hollow sidewalk segment features a concrete floor and a concrete slab ceiling. An elevator accesses the hollow sidewalk space from street level.

P3a. Description:
(Describe resource and its major elements. Include design, materials, condition, alterations, size, setting, and boundaries.)

The building at 924 12th Street is located on the northeast corner of the intersection of 11th and J streets and contains two segments of hollow sidewalks; only the southern hollow sidewalk segment was accessible for survey and currently functions as a storage area. The southern hollow sidewalk segment parallels J Street. It is supported by a poured concrete partition wall which bisects the segment and is supported by poured concrete street retaining walls on the south. The concrete wall is pierced by an opening with a flush, metal door. A poured concrete wall and a hollow clay tile wall support the hollow sidewalk segment on its west and east ends, respectively. The hollow sidewalk segment features a concrete floor and a concrete slab ceiling. An elevator accesses the hollow sidewalk space from street level.

P5b. Photo:
(view and date)
Western portion of hollow sidewalk segment, looking north
05/2009

P6. Date Constructed/Age and Sources:
Historic
ca. 1870

P7. Owner and Address:
Masonic Temple Association
1123 J Street
Sacramento, CA 95814

P8. Recorded by:
Page & Turnbull, Inc. (MEG)
2401 C Street, Ste. B
Sacramento, CA 95816

P9. Date Recorded:
05/21/2009

P10. Survey Type:
Reconnaissance

P11. Report Citation:
(Cite survey report and other sources, or enter “none”)
Raised Streets and Hollow Sidewalks Survey Report

Attachments:
None Location Map Sketch Map Continuation Sheet Building, Structure, and Object Record Archaeological Record District Record Linear Feature Record Milling Station Record Rock Art Record Artifact Record Photograph Record Other (list)

DPR 523A (1/95)
Required information
State of California & The Resources Agency
DEPARTMENT OF PARKS AND RECREATION
CONTINUATION SHEET

<table>
<thead>
<tr>
<th>Resource Name or # (Assigned by recorder)</th>
<th>Recorded by</th>
<th>Date</th>
<th>Continuation</th>
<th>Update</th>
</tr>
</thead>
<tbody>
<tr>
<td>924 12th Street, Hollow Sidewalk</td>
<td>Page & Turnbull</td>
<td>05/21/2009</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- East end wall of hollow sidewalk segment (Page & Turnbull, 05/2009)
- Elevator hatch to J Street, in eastern portion of hollow sidewalk segment (Page & Turnbull, 05/2009)
*Resource name(s) or number (assigned by recorder) 1005 12th Street, Hollow Sidewalk

P1. Other Identifier:

P2. Location: ☒ Not for Publication ☑ Unrestricted a. County: Sacramento

and (P2b and P2c or P2d. Attach a Location Map as necessary.)

*b. USGS 7.5’ Quad: Sacramento East
date: 1998
c. Address: 1005 12th Street, Sacramento
City: Sacramento
Zip: 95814
d. UTM: Zone: mE/ mN (G.P.S.)
e. Other Locational Data: Assessor’s Parcel Number (Map, Block, Lot): 0060110020000

P3a. Description: (Describe resource and its major elements. Include design, materials, condition, alterations, size, setting, and boundaries.)

The building at 1005 12th Street is located on the southeast corner of 12th and J streets and features one hollow sidewalk segment on the north that parallels J Street. The 1005 12th Street hollow sidewalk segment currently holds electrical meters for the building. The hollow sidewalk segment features concrete piers that support the 1005 12th Street building on the south and butressed brick street retaining walls clad in stucco on the north. The hollow sidewalk segment is enclosed at its east and west ends by walls clad in drywall. The hollow sidewalk segment features concrete flooring and concrete slab ceiling. The hollow sidewalk segment is accessed by an elevator from the street level.

P3b. Resource Attributes: (list attributes and codes) HP39. Other

P4. Resources Present: ☑ Building ☑ Structure ☑ Object ☑ Site ☑ District ☑ Element of District ☑ Other

P5b. Photo: (view and date)

Northern segment, brick piers & retaining wall, looking east
04/2009

P6. Date Constructed/Age and Sources: ☑ Historic
ca. 1870

P7. Owner and Address:
Corum Family Partnership
1005 12th Street
Sacramento, CA 95814

P8. Recorded by:
Page & Turnbull, Inc. (MEG)
2401 C Street, Ste. B
Sacramento, CA 95816

P9. Date Recorded:
05/21/2009

P10. Survey Type:
Reconnaissance

P11. Report Citation: (Cite survey report and other sources, or enter “none”)
Raised Streets and Hollow Sidewalks Survey Report

*Attachments: ☑ None ☑ Location Map ☑ Sketch Map ☑ Continuation Sheet ☑ Building, Structure, and Object Record
Archaeological Record ☐ District Record ☐ Linear Feature Record ☑ Milling Station Record ☑ Rock Art Record
Artifact Record ☑ Photograph Record ☑ Other (list)

DPR 523A (1/95)
*Required information
Interior detail of the elevator on J Street (Page & Turnbull, 04/2009)

Exterior of elevator hatch on J Street (Page & Turnbull, 04/2009)
State of California — The Resources Agency
DEPARTMENT OF PARKS AND RECREATION
PRIMARY RECORD

<table>
<thead>
<tr>
<th>Other Listings</th>
<th>Review Code</th>
<th>Reviewer</th>
<th>Date</th>
</tr>
</thead>
</table>

Resource name(s) or number(assigned by recorder) 1013 Front Street, Hollow Sidewalk

P1. Other Identifier:

- **Location:**
 - ☐ Not for Publication ☑ Unrestricted
 - *a. County:* Sacramento
 - (P2b and P2c or P2d. Attach a Location Map as necessary.)
 - *b. USGS 7.5’ Quad:* Sacramento West
 - Date: 1998
 - *c. Address:* 1013 Front Street, Sacramento
 - City: Sacramento
 - Zip: 95814
 - *d. UTM:* Zone: ___________ mE/ _________ mN (G.P.S.)
 - *e. Other Locational Data:* Assessor’s Parcel Number (Map, Block, Lot): 00600710350000

P3a. Description:
(Describe resource and its major elements. Include design, materials, condition, alterations, size, setting, and boundaries.)

The building at 1013 Front Street is located on the southeast corner of the intersection of Front and J streets and contains two segments of hollow sidewalks; only the western hollow sidewalk segment paralleling Front Street was accessible for survey. The 1013 Front Street hollow sidewalk segment currently functions as an office and wine storage area. Brick and concrete block walls support the 1013 Front Street building on the east, and brick buttressed retaining walls and concrete block retaining walls support the sidewalk on the west. The segment terminates at its north and south ends in concrete block end walls. The hollow sidewalk segment features concrete flooring and a concrete slab ceiling.

P3b. Resource Attributes:
(list attributes and codes)

- ☑ HP39. Other

P4. Resources Present:

<table>
<thead>
<tr>
<th>Building</th>
<th>Structure</th>
<th>Object</th>
<th>Site</th>
<th>District</th>
<th>Element of District</th>
<th>Other</th>
</tr>
</thead>
</table>

P5b. Photo:
(view and date)

- Hollow sidewalk segment, looking southwest
 - 04/2009

P6. Date Constructed/Age and Sources:

- ☑ Historic
 - 1864
 - HEC, 2009.

P7. Owner and Address:

- ____________________________
 - ____________________________
 - ____________________________
 - ____________________________
 - ____________________________

P8. Recorded by:

- Page & Turnbull, Inc. (MEG)
 - 2401 C Street, Ste. B
 - Sacramento, CA 95816

P9. Date Recorded:

- 05/26/2009

P10. Survey Type:

- Reconnaissance

P11. Report Citation:
(Cite survey report and other sources, or enter “none”)

- Raised Streets and Hollow Sidewalks Survey Report

*Attachments:

- ☑ None ☑ Location Map ☑ Sketch Map ☑ Continuation Sheet ☑ Building, Structure, and Object Record
 - ☑ Archaeological Record ☑ District Record ☑ Linear Feature Record ☑ Milling Station Record ☑ Rock Art Record
 - ☑ Artifact Record ☑ Photograph Record ☑ Other (list)

- DPR 523A (1/95)

*Required information
State of California & The Resources Agency
DEPARTMENT OF PARKS AND RECREATION
CONTINUATION SHEET

*Resource Name or # (Assigned by recorder) 1013 Front Street, Hollow Sidewalk

* Recorded by: Page & Turnbull * Date 05/26/2009 Continuation Update

Hollow sidewalk segment, looking northwest (Page & Turnbull, 04/2009)

Hollow sidewalk segment, looking northeast at brick wall supporting 1013 Front Street building (Page & Turnbull, 04/2009)
State of California — The Resources Agency
DEPARTMENT OF PARKS AND RECREATION
PRIMARY RECORD

<table>
<thead>
<tr>
<th>Other Listings</th>
<th>Review Code</th>
<th>Reviewer</th>
<th>Date</th>
</tr>
</thead>
</table>

P1. **Other Identifier:**

*P2. **Location:**
Not for Publication
Unrestricted
*P2a. **County:**
Sacramento

and (P2b and P2c or P2d. Attach a Location Map as necessary.)

P2b. **USGS 7.5' Quad:**
Sacramento West
*P2c. **Address:**
1121 Front Street, Sacramento
City: Sacramento
Zip: 95814

P2d. **UTM:**
Zone: mE/ mN (G.P.S.)

P2e. **Other Locational Data:**
Assessor’s Parcel Number (Map, Block, Lot): 00600720250000

P3a. **Description:**
(Describe resource and its major elements. Include design, materials, condition, alterations, size, setting, and boundaries.)

Two hollow sidewalk segments border a sub-grade parking lot at 1121 Front Street on the northeast corner of the intersection of Front and L Streets. The 1121 Front Street hollow sidewalk segments have an L-shaped plan that wraps the street corner, with a leg that parallels Front Street on the west, and a leg that parallels L Street on the south. Poured concrete columns support the overhanging street level sidewalk on the east and north, with the east north sides of the hollow sidewalk space open to the exterior. A brick buttressed street retaining wall supports the west and south edges of the sidewalk. The hollow sidewalk segment terminates in brick walls on the north and east ends. The hollow sidewalk segments feature a dirt floor and a concrete slab ceiling.

P3b. **Resource Attributes:**
(list attributes and codes)
*P39. **Other**

P4. **Resources Present:**
Boxing
Structure
Object
Site
District
Element of District
Other

P5b. **Photo:**
(view and date)

Southern hollow sidewalk segment, looking southeast
04/2009

*P6. **Date Constructed/Age and Sources:**
1864-1865
HEC, 2009.

*P7. **Owner and Address:**

Harvego Real Estate, LLC
2356 Gold Meadow Way, 205
Rancho Cordova, CA 95670

*P8. **Recorded by:**

Page & Turnbull, Inc. (MEG)
2401 C Street, Ste. B
Sacramento, CA 95816

*P9. **Date Recorded:**

05/25/2009

*P10. **Survey Type:**

Reconnaissance

*P11. **Report Citation:**
(Cite survey report and other sources, or enter “none”)
Raised Streets and Hollow Sidewalks Survey Report

*Attachments:
None
Location Map
Sketch Map
Continuation Sheet
Building, Structure, and Object Record
Archaeological Record
District Record
Linear Feature Record
Milling Station Record
Rock Art Record
Artifact Record
Photograph Record
Other (list)

DPR 523A (1/95)
*Required information
<table>
<thead>
<tr>
<th>Page</th>
<th>2 of 2</th>
<th>*Resource Name or # (Assigned by recorder)</th>
<th>1121 Front Street, Hollow Sidewalk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recorded by:</td>
<td>Page & Turnbull</td>
<td>Date</td>
<td>05/25/2009</td>
</tr>
</tbody>
</table>

Western hollow sidewalk segment, looking north (Page & Turnbull, 04/2009)
The building at 114 J Street is located on the south side of J Street, between Front and 2nd street, and contains one hollow sidewalk segment. The 114 J Street hollow sidewalk segment currently functions as a storage area. This hollow sidewalk segment parallels J Street and features brick walls that support the 114 J Street building on the north and butressed brick street retaining walls on the north. The brick walls supporting the building feature window and door openings surmounted by a lintel of bricks coursed in a soldier configuration. One of the two door openings is infilled with brick, and the remaining opening includes a granite threshold. The window openings feature corbeled brick lintels reinforced by metal straps and are covered by single metal panels. The hollow sidewalk segment is enclosed at its east and west ends by brick walls. The hollow sidewalk segment contains concrete flooring and a ceiling covered by cork.
Brick walls supporting 114 J Street, looking south (Page & Turnbull, 04/2009)

Granite threshold at opening in building wall, looking northeast (Page & Turnbull, 04/2009)
State of California — The Resources Agency
DEPARTMENT OF PARKS AND RECREATION

PRIMARY RECORD

Other Listings

Review Code Reviewer Date

Page 1 of 2 *Resource name(s) or number (assigned by recorder) 117 J Street, Hollow Sidewalk

P1. Other Identifier:

*P2. Location: □ Not for Publication ☑ Unrestricted *a. County: Sacramento and (P2b and P2c or P2d. Attach a Location Map as necessary.)

*P3a. Description: (Describe resource and its major elements. Include design, materials, condition, alterations, size, setting, and boundaries.)

The building at 117 J Street is located on the north side of J Street, between Front and 2nd streets, and contains one hollow sidewalk segment. The 117 J Street hollow sidewalk segment currently functions as a night club lounge. This hollow sidewalk segment parallels J Street and features brick piers that support the 117 J Street building on the north. On the south and west, butressed brick street retaining walls parallel J Street and Firehouse Alley, respectively. The hollow sidewalk segment is enclosed at its east end by a wall clad with drywall. The hollow sidewalk segment features a concrete floor and a concrete slab ceiling that is supported at intervals by poured concrete columns.

*P3b. Resource Attributes: (list attributes and codes) HP39. Other

*P4. Resources Present: ☑ Building ☑ Structure ☑ Object ☐ Site ☐ District ☐ Element of District ☑ Other

*P5b. Photo: (view and date)

Hollow sidewalk segment, looking south

04/2009

*P6. Date Constructed/Age and Sources: ☑ Historic

1864

HEC, 2009.

*P7. Owner and Address:

Old Town Bennett Investors et al

540 Fulton Avenue

Sacramento, CA 95825

*P8. Recorded by:

Page & Turnbull, Inc. (MEG)

2401 C Street, Ste. B

Sacramento, CA 95816

*P9. Date Recorded:

05/27/2009

P10. Survey Type:

Reconnaissance

*P11. Report Citation: (Cite survey report and other sources, or enter "none") Raised Streets and Hollow Sidewalks Survey Report

*Attachments: ☑ None ☐ Location Map ☑ Sketch Map ☑ Continuation Sheet ☑ Building, Structure, and Object Record

☐ Archaeological Record ☐ District Record ☐ Linear Feature Record ☐ Milling Station Record ☐ Rock Art Record

☐ Artifact Record ☑ Photograph Record ☑ Other (list)

DPR 523A (1/95) *Required information
Resource Name or # (Assigned by recorder)	117 J Street, Hollow Sidewalk
Recorded by: | Page & Turnbull
Date | 05/27/2009

- Looking southwest at street retaining walls along J Street & and Firehouse Alley (Page & Turnbull, 04/2009)

- Hollow sidewalk segment, looking southeast, poured concrete column in foreground (Page & Turnbull, 04/2009)
The building at 122 J Street is located on the south side of J Street, between Front and 2nd streets, and contains one hollow sidewalk segment. The 122 J Street hollow sidewalk segment currently functions as a storage area. The hollow sidewalk segment parallels J Street and features brick piers with retrofitted concrete reinforcing beams that support the 122 J Street building on the south and butressed brick street retaining walls on the north. The hollow sidewalk segment is enclosed at its west end by a concrete block wall and at its east end by a brick wall. The hollow sidewalk segment features a concrete floor and a concrete slab ceiling that is supported at intervals by poured concrete columns.

P3b. Resource Attributes: (list attributes and codes)
HP39. Other

P4. Resources Present:
- Building
- Structure
- Object
- Site
- District
- Element of District
- Other

P5b. Photo: (view and date)
Hollow sidewalk segment, looking northwest
04/2009

P6. Date Constructed/Age and Sources:
- Historic
1864
HEC, 2009.

P7. Owner and Address:
Risch Family Trust
122 J Street
Sacramento, CA 95814

P8. Recorded by:
Page & Turnbull, Inc. (MEG)
2401 C Street, Ste. B
Sacramento, CA 95816

P9. Date Recorded:
05/26/2009

P10. Survey Type:
Reconnaissance

P11. Report Citation: (Cite survey report and other sources, or enter “none”)
Raised Streets and Hollow Sidewalks Survey Report

Attachments:
- None
- Location Map
- Sketch Map
- Continuation Sheet
- Building, Structure, and Object Record
- Archaeological Record
- District Record
- Linear Feature Record
- Milling Station Record
- Rock Art Record
- Artifact Record
- Photograph Record
- Other (list)

DPR 523A (1/95)
*Required information
Brick building walls supporting 122 J Street and poured concrete columns, looking south (Page & Turnbull, 04/2009)

Inside (south side) of building wall supporting 122 J Street, with concrete reinforcing beams, looking north (Page & Turnbull, 04/2009)
The building at 123 J Street is located on the north side of J Street, between Front and 2nd streets, and contains one hollow sidewalk segment. The 123 J Street hollow sidewalk segment currently functions as a print shop. This hollow sidewalk segment parallels J Street and features brick walls that support the 123 J Street building on the north and buttressed brick street retaining walls on the south. The brick building walls supporting 123 J Street feature door openings. The hollow sidewalk segment is enclosed on its east end by a wall clad with drywall and on its west end by a brick wall. The hollow sidewalk segment contains carpeted flooring and a drywalled ceiling supported at intervals by square drywalled piers.
Looking north at the brick building wall supporting the 123 J Street building (Page & Turnbull, 04/2009)

Hollow sidewalk segment, looking northeast (Page & Turnbull, 04/2009)
State of California — The Resources Agency
DEPARTMENT OF PARKS AND RECREATION
PRIMARY RECORD

Other Listings

Review Code Reviewer Date

State of California — The Resources Agency
DEPARTMENT OF PARKS AND RECREATION
PRIMARY RECORD

Other Listings

Review Code Reviewer Date

Resource name(s) or number (assigned by recorder) 128 J Street, Hollow Sidewalk

*P2. Location: ☑ Not for Publication ☒ Unrestricted ☑ County: Sacramento

and (P2b and P2c or P2d. Attach a Location Map as necessary.)

*b. USGS 7.5’ Quad: Sacramento West Date: 1998

c. Address: 128 J Street, Sacramento City: Sacramento Zip: 95814

d. UTM: Zone: mE/ mN (G.P.S.)

e. Other Locational Data: Assessor’s Parcel Number (Map, Block, Lot): 00600710270000

*P3a. Description: (Describe resource and its major elements. Include design, materials, condition, alterations, size, setting, and boundaries.)

The building at 128 J Street is located on the south side of J Street, between Front and 2nd streets, and contains one hollow sidewalk segment. The 128 J Street hollow sidewalk segment currently functions as a storage area. This hollow sidewalk segment parallels J Street and features concrete plastered walls that support the 128 J Street building on the north and buttressed brick street retaining walls on the north. The building walls feature pilasters and engaged piers that appear to provide additional support to the 128 J Street building. The hollow sidewalk segment is enclosed at its east and west ends by brick walls. The hollow sidewalk segment features carpeted flooring and a concrete slab ceiling that is finished with concrete plaster and supported at intervals by poured concrete columns.

*P3b. Resource Attributes: (list attributes and codes) HP39. Other

*P4. Resources Present: ☑ Building ☒ Structure ☑ Object ☑ Site ☑ District ☑ Element of District ☑ Other

*P5b. Photo: (view and date)

Hollow sidewalk segment, looking east

04/2009

*P6. Date Constructed/Age and Sources: ☑ Historic

1864

HEC, 2009.

*P7. Owner and Address:

Yu Family Revocable Trust

9431 Maris Lane

Elk Grove, CA 95624

*P8. Recorded by:

Page & Turnbull, Inc. (MEG)

2401 C Street, Ste. B

Sacramento, CA 95816

*P9. Date Recorded:

05/27/2009

*P10. Survey Type:

Reconnaissance

*P11. Report Citation: (Cite survey report and other sources, or enter “none”) Raised Streets and Hollow Sidewalks Survey Report

*Attachments: ☑ None ☑ Location Map ☑ Sketch Map ☒ Continuation Sheet ☒ Building, Structure, and Object Record

☐ Archaeological Record ☑ District Record ☑ Linear Feature Record ☑ Milling Station Record ☑ Rock Art Record

☐ Artifact Record ☑ Photograph Record ☐ Other (list)

DPR 523A (1/95)

*Required information
Finished building wall with engaged piers supporting 128 J Street, looking southeast. Poured concrete columns in foreground. (Page & Turnbull, 04/2009)

North side of building wall supporting 128 J Street with pilasters, looking northeast from basement (Page & Turnbull, 04/2009)
State of California — The Resources Agency
DEPARTMENT OF PARKS AND RECREATION
PRIMARY RECORD

<table>
<thead>
<tr>
<th>Other Listings</th>
<th>Review Code</th>
<th>Reviewer</th>
<th>Date</th>
</tr>
</thead>
</table>

Page 1 of 2 *Resource name(s) or number (assigned by recorder)* 629 J Street, Hollow Sidewalk

P1. Other Identifier:

<table>
<thead>
<tr>
<th>P2. Location:</th>
<th>☑ Unrestricted</th>
<th>a. County: Sacramento</th>
</tr>
</thead>
<tbody>
<tr>
<td>and (P2b and P2c or P2d. Attach a Location Map as necessary.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. USGS 7.5' Quad: Sacramento East</td>
<td>Date: 1998</td>
<td></td>
</tr>
<tr>
<td>c. Address: 629 J Street, Sacramento</td>
<td>City: Sacramento</td>
<td></td>
</tr>
<tr>
<td>d. UTM: Zone: mE/ mN (G.P.S.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>e. Other Locational Data: Assessor’s Parcel Number (Map, Block, Lot): 00600320120000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

P3a. Description: (Describe resource and its major elements. Include design, materials, condition, alterations, size, setting, and boundaries.)

The building at 629 J Street is located on the northwest corner of the intersection of 7th and J Streets and contains two segments of hollow sidewalks. The 629 J Street hollow sidewalk segments currently house an office, storage space, and mechanical equipment. The southern hollow sidewalk segment parallels J Street and features brick and hollow clay tile building walls that support the 629 J Street building on the north, and poured concrete street retaining walls on the south. This hollow sidewalk segment is enclosed at its west end by a concrete block wall and terminates on the east in a poured concrete retaining wall. The eastern hollow sidewalk segment parallels 7th Street. Brick and hollow clay tile building walls support the 629 J Street building on the west side of the sidewalk and a poured concrete street retaining wall supports the sidewalk on the east. The eastern hollow sidewalk segment is divided into several rooms by hollow clay tile partition walls. The south end of the segment terminates in a poured concrete retaining wall and the north end of the segment terminates in a hollow clay tile wall. Both hollow sidewalk segments feature concrete floors and concrete slab ceilings.

P3b. Resource Attributes: (list attributes and codes) HP39. Other

P4. Resources Present: Building Structure Object Site District Element of District Other

P5b. Photo: (view and date) Southern segment, hollow clay tile and brick walls, looking north 02/2009

P6. Date Constructed/Age and Sources: Historic 1868-1876 HEC, 2009.

P7. Owner and Address:

James W Cameron, Jr.
629 J Street
Sacramento, CA 95814

P8. Recorded by:

Page & Turnbull, Inc. (MEG)
2401 C Street, Ste. B
Sacramento, CA 95816

P9. Date Recorded: 05/20/2009

P10. Survey Type: Reconnaissance

P11. Report Citation: (Cite survey report and other sources, or enter “none”) Raised Streets and Hollow Sidewalks Survey Report

Attachments: None Location Map Sketch Map Continuation Sheet Building, Structure, and Object Record Archaeological Record District Record Linear Feature Record Milling Station Record Rock Art Record Artifact Record Photograph Record Other (list)

DPR 523A (1/95) *Required information*
Street retaining wall of eastern segment, looking northeast (Page & Turnbull, 02/2009)

Eastern segment, hollow clay tile building wall, looking northwest (Page & Turnbull, 02/2009)
P1. Other Identifier:

*P2. Location: [] Not for Publication [] Unrestricted

and (P2b and P2c or P2d. Attach a Location Map as necessary.)

a. County: Sacramento

b. USGS 7.5' Quad: Sacramento East

c. Address: 707 J Street, Sacramento

d. UTM: Zone: mE/ mN (G.P.S.)

e. Other Locational Data: Assessor’s Parcel Number (Map, Block, Lot): 00600340140000

P3a. Description: (Describe resource and its major elements. Include design, materials, condition, alterations, size, setting, and boundaries.)

The building at 707 J Street is located on the north side of J Street, between 7th and 8th streets, and contains one hollow sidewalk segment. The 707 J Street hollow sidewalk segment currently functions as a storage area. The hollow sidewalk segment parallels J Street and features brick piers that support the 707 J Street building on the north and butressed brick street retaining walls on the south. The hollow sidewalk segment is enclosed at its east and west ends by sheets of corrugated metal. The hollow sidewalk segment features a concrete floor and a concrete slab ceiling. An elevator accesses the hollow sidewalk from the street level.

P3b. Resource Attributes: (list attributes and codes)

HP39. Other

P4. Resources Present: [] Building [] Structure [] Object [] Site [] District [] Element of District [] Other

P5b. Photo: (view and date)

Brick piers supporting building, looking south into hollow sidewalk space (?)

03/2009

P6. Date Constructed/Age and Sources: [] Historic

1868

HEC, 2009.

P7. Owner and Address:

Herbert K/Inez F Yee
Revocable Trust
1301 Normandy Lane
Sacramento, CA 95822

P8. Recorded by:

Page & Turnbull, Inc. (MEG)
2401 C Street, Ste. B
Sacramento, CA 95816

P9. Date Recorded:

05/19/2009

P10. Survey Type:

Reconnaissance

P11. Report Citation: (Cite survey report and other sources, or enter “none”) Raised Streets and Hollow Sidewalks Survey Report

Attachments: [] None [] Location Map [] Sketch Map [] Continuation Sheet [] Building, Structure, and Object Record

[] Archaeological Record [] District Record [] Linear Feature Record [] Milling Station Record [] Rock Art Record

[] Artifact Record [] Photograph Record [] Other (list)

DPR 523A (1/95)

*Required information
Brick street retaining walls and corrugated metal end partition (at right), looking southwest (Page & Turnbull, 03/2009)

Exterior of elevator hatch on J Street (Page & Turnbull, 03/2009)
State of California — The Resources Agency
DEPARTMENT OF PARKS AND RECREATION
PRIMARY RECORD

<table>
<thead>
<tr>
<th>Other Listings</th>
<th>Review Code</th>
<th>Reviewer</th>
<th>Date</th>
</tr>
</thead>
</table>

Page 1 of 2

*Resource name(s) or number (assigned by recorder) | 712 J Street, Hollow Sidewalk

P1. Other Identifier: 715 Merchant Street, Hollow Sidewalk

*P2. Location: [] Not for Publication [X] Unrestricted

*a. County: Sacramento

and (P2b and P2c or P2d. Attach a Location Map as necessary.)

*b. USGS 7.5’ Quad: Sacramento East

*c. Address: 715 Merchant Street, Sacramento

City: Sacramento Zip: 95814

d. UTM: Zone: 38N mE/ 3398066 mN (G.P.S.)

e. Other Locational Data: Assessor’s Parcel Number (Map, Block, Lot): 00600940040000

*P3a. Description: (Describe resource and its major elements. Include design, materials, condition, alterations, size, setting, and boundaries.)

Two buildings, one at 712 J Street and the other at 715 Merchant Street, stand on this parcel. The building at 715 Merchant Street is located on the north side of Merchant Street, between 7th and 8th streets, and contains one hollow sidewalk segment. The 715 Merchant Street hollow sidewalk segment is not currently utilized. The hollow sidewalk segment parallels Merchant Street and features a brick building wall with door openings that supports the 715 Merchant Street building on the north and a brick street retaining wall with corbelled piers on the south. The hollow sidewalk segment is enclosed at its east and west ends by brick walls. The hollow sidewalk segment features a concrete floor and a concrete slab ceiling reinforced with steel I-beams and supported by steel X-brace frames. An elevator accesses the hollow sidewalk from the street level.

*P3b. Resource Attributes: (list attributes and codes) HP39. Other

*P4. Resources Present: [] Building [X] Structure [] Object [] Site [] District [] Element of District [] Other

P5b. Photo: (view and date)

Brick street retaining wall with corbelled piers, looking southeast

05/2009

*P6. Date Constructed/Age and Sources: [X] Historic

1868

HEC, 2009.

*P7. Owner and Address:

Javed T/Anma Siddiqui, et al

1808 J Street

Sacramento, CA 95811

*P8. Recorded by:

Page & Turnbull, Inc. (MEG)

2401 C Street, Ste. B

Sacramento, CA 95816

*P9. Date Recorded:

05/19/2009

*P10. Survey Type:

Reconnaissance

*P11. Report Citation: (Cite survey report and other sources, or enter “none”) Raised Streets and Hollow Sidewalks Survey Report

*Attachments: [] None [] Location Map [] Sketch Map [X] Continuation Sheet [] Building, Structure, and Object Record [] Archaeological Record [] District Record [] Linear Feature Record [] Milling Station Record [] Rock Art Record [] Artifact Record [] Photograph Record [] Other (list)

DPR 523A (1/95)

*Required information
<table>
<thead>
<tr>
<th>*Resource Name or # (Assigned by recorder)</th>
<th>712 J Street, Hollow Sidewalk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recorded by:</td>
<td>Page & Turnbull</td>
</tr>
<tr>
<td>Date</td>
<td>05/19/2009</td>
</tr>
<tr>
<td>Continuation</td>
<td>[]</td>
</tr>
<tr>
<td>Update</td>
<td>[]</td>
</tr>
</tbody>
</table>

Hollow sidewalk segment, looking southwest (Page & Turnbull, 05/2009)

Building wall supporting 715 Merchant Street, looking northeast (Page & Turnbull, 05/2009)
State of California — The Resources Agency
DEPARTMENT OF PARKS AND RECREATION
PRIMARY RECORD

<table>
<thead>
<tr>
<th>Primary #</th>
<th>HRI #</th>
<th>Trinomial</th>
<th>NRHP Status Code</th>
<th>Review Code</th>
<th>Reviewer</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>6Z</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Other Listings

Page 1 of 2
Resource name(s) or number (assigned by recorder)
725 J Street, Hollow Sidewalk

P1. Other Identifier:

P2. Location:
Not for Publication ☒ Unrestricted

a. County: Sacramento

and (P2b and P2c or P2d. Attach a Location Map as necessary.)

b. USGS 7.5' Quad: Sacramento East
Date: 1998

c. Address: 725 J Street, Sacramento
City: Sacramento
Zip: 95814

d. UTM: Zone: mE/ mN (G.P.S.)

e. Other Locational Data: Assessor’s Parcel Number (Map, Block, Lot): 00600340100000

P3a. Description:
(Describe resource and its major elements. Include design, materials, condition, alterations, size, setting, and boundaries.)

The building at 725 J Street is located on the north side of J Street, between 7th and 8th streets, and contains one hollow sidewalk segment. The 725 J Street hollow sidewalk segment currently functions as a storage area. The hollow sidewalk segment parallels J Street and features concrete piers on brick footings that support the 725 J Street building on the north and a butressed brick street retaining wall on the south. The hollow sidewalk segment is enclosed at its east and west ends by brick end walls clad with stucco. The hollow sidewalk segment features a concrete floor and a concrete slab ceiling. Granite stairs located at the center of the street retaining wall on the south side of the sidewalk once provided access from J Street.

P3b. Resource Attributes:
(list attributes and codes)
HP39. Other

P4. Resources Present:

- Building
- Structure
- Object
- Site
- District
- Element of District
- Other

P5b. Photo:
(view and date)

Concrete piers on brick footings supporting building, looking southwest
05/2009

P6. Date Constructed/Age and Sources:

1868
Historic
HEC, 2009.

P7. Owner and Address:

J Street Reformation
Partnership

2150 River Plaza Drive
Sacramento, CA 95833

P8. Recorded by:

Page & Turnbull, Inc. (MEG)
2401 C Street, Ste. B
Sacramento, CA 95816

P9. Date Recorded:

05/19/2009

P10. Survey Type:

Reconnaissance

P11. Report Citation:
(Cite survey report and other sources, or enter “none”)
Raised Streets and Hollow Sidewalks Survey Report

Attachments:

- None
- Location Map
- Sketch Map
- Continuation Sheet
- Building, Structure, and Object Record
- Archaeological Record
- District Record
- Linear Feature Record
- Milling Station Record
- Rock Art Record
- Artifact Record
- Photograph Record
- Other (list)

DPR 523A (1/95)

*Required information
Stucco-clad brick end wall, looking southeast (Page & Turnbull, 05/2009)

Granite stairs from hollow sidewalk to J Street, looking south (Page & Turnbull, 05/2009)
P1. Other Identifier:

- Location: ☒ Not for Publication ☑ Unrestricted
- *a. County: Sacramento*
- *b. USGS 7.5’ Quad: Sacramento East*
- *c. Address: 729-731 J Street, Sacramento*
- *d. Address: City: Sacramento, Zip: 95814*
- *e. UTM: Zone: mE/ mN (G.P.S.)*

P3a. Description:

The building at 729-731 J Street is located on the northwest corner of the intersection of 8th and J streets and contains two hollow segments in an L-shaped plan that wraps the street corner. The southern leg of the segments parallels J Street, and the eastern leg parallels 8th Street. The hollow sidewalk segments are not currently utilized. The segments are supported by the brick building walls of the 729-731 J Street building on the north and west, and by brick, buttressed street retaining walls on the south and east. The brick building walls feature arched door openings and wood door frames. In the southern leg of the segments, the door openings are framed by corbelled brackets. A wood partition extends east from the building wall into the eastern leg of the segments and features a door labeled “C. Flaherty.” The segments terminate in brick walls at the west and south ends and feature unfinished, dirt floors and a concrete slab ceiling that is pierced by prism lights that provide light from the street level exterior.

P3b. Resource Attributes:

- HP39. Other

P4. Resources Present:

- ☑ Building
- ☑ Structure
- ☐ Object
- ☐ Site
- ☐ District
- ☐ Element of District
- ☐ Other

P5b. Photo:

Western segment, brick piers, looking north
02/2009

P6. Date Constructed/Age and Sources:

- ☑ Historic
- 1868-1870
- HEC, 2009.

P7. Owner and Address:

- Porter Family Trust
- 5250 Valhalla Drive
- Carmichael, CA 95608

P8. Recorded by:

- Page & Turnbull, Inc. (MEG)
- 2401 C Street, Ste. B
- Sacramento, CA 95816

P9. Date Recorded:

05/19/2009

P10. Survey Type:

- Reconnaissance

P11. Report Citation: (Cite survey report and other sources, or enter “none”)

Raised Streets and Hollow Sidewalks Survey Report

Attachments:

- ☐ None
- ☑ Location Map
- ☑ Sketch Map
- ☑ Continuation Sheet
- ☐ Building, Structure, and Object Record
- ☐ Archaeological Record
- ☐ District Record
- ☐ Linear Feature Record
- ☐ Milling Station Record
- ☐ Rock Art Record
- ☐ Artifact Record
- ☐ Photograph Record
- ☐ Other (list)

DPR 523A (1/95)

Required information
Wood frame partition in eastern leg of the segment, looking northwest (Page & Turnbull, 02/2009)

Detail of sidewalk prism lights (Page & Turnbull, 02/2009)
The building at 900 J Street is located on the southeast corner of the intersection of 9th and J Streets and contains two segments of hollow sidewalks. The 900 J Street hollow sidewalk segments currently function as a showroom for a snowboard shop. The northern hollow sidewalk segment parallels J Street and features brick piers that support the 900 J Street building on the south, and butressed brick street retaining walls on the north. This hollow sidewalk segment is enclosed at its east and west ends by walls finished with drywall. The western hollow sidewalk segment parallels 9th Street. Brick, piers with corbelled bases support the 900 J Street building on the east side of the sidewalk, and a buttressed brick street retaining wall supports the sidewalk on the west. The north and south ends of the segment terminate in walls finished with drywall. Both hollow sidewalk segments feature concrete floors and concrete slab ceilings. At street level, the hollow sidewalk includes a granite curb at the corner of 9th and J Streets.

*P2. Location: [] Not for Publication [✓] Unrestricted

[] P2a. County: Sacramento

[] P2b. USGS 7.5' Quad: Sacramento East

[] P2c. Address: 900 J Street, Sacramento

[] P2d. City: Sacramento

[] P2e. Zip: 95814

*P3a. Description: (Describe resource and its major elements. Include design, materials, condition, alterations, size, setting, and boundaries.)

The building at 900 J Street is located on the southeast corner of the intersection of 9th and J Streets and contains two segments of hollow sidewalks. The 900 J Street hollow sidewalk segments currently function as a showroom for a snowboard shop. The northern hollow sidewalk segment parallels J Street and features brick piers that support the 900 J Street building on the south, and butressed brick street retaining walls on the north. This hollow sidewalk segment is enclosed at its east and west ends by walls finished with drywall. The western hollow sidewalk segment parallels 9th Street. Brick, piers with corbelled bases support the 900 J Street building on the east side of the sidewalk, and a buttressed brick street retaining wall supports the sidewalk on the west. The north and south ends of the segment terminate in walls finished with drywall. Both hollow sidewalk segments feature concrete floors and concrete slab ceilings. At street level, the hollow sidewalk includes a granite curb at the corner of 9th and J Streets.

*P3b. Resource Attributes: (list attributes and codes) HP39. Other

*P4. Resources Present: [] Building [✓] Structure [] Object [] Site [] District [] Element of District [] Other

P5b. Photo: (view and date)

Western segment, brick piers supporting building, looking north

02/2009

*P6. Date Constructed/Age and Sources: [] Historic

1868-1876

HEC, 2009.

*P7. Owner and Address:

Palladian Props, LLC

1425 River Park Drive, 404

Sacramento, CA 95815

*P8. Recorded by:

Page & Turnbull, Inc. (MEG)

2401 C Street, Ste. B

Sacramento, CA 95816

*P9. Date Recorded:

05/11/2009

*P10. Survey Type:

Reconnaissance

*P11. Report Citation: (Cite survey report and other sources, or enter “none”) Raised Streets and Hollow Sidewalk Survey Report

*Attachments: [] None [] Location Map [] Sketch Map [✓] Continuation Sheet [] Building, Structure, and Object Record [] Archaeological Record [] District Record [] Linear Feature Record [] Milling Station Record [] Rock Art Record [] Artifact Record [] Photograph Record [] Other (list)

DPR 523A (1/95)

*Required information
Street retaining wall in western segment, looking northwest (Page & Turnbull, 02/2009)

Granite curb, intersection of 9th and J Streets (Page & Turnbull, 05/2009)
The building at 908 J Street is located on the south side of J Street, between 9th and 10th streets, and contains one hollow sidewalk segment. The 908 J Street hollow sidewalk segment currently functions as a storage area. The hollow sidewalk segment parallels J Street and features concrete and brick piers that support the 908 J Street building on the south, and brick butressed street retaining walls on the north. This hollow sidewalk segment is enclosed at its east and west ends by brick end walls. The hollow sidewalk segment features a concrete floor and a concrete slab ceiling supported by steel I-beams. The hollow sidewalk space includes a manhole with a starred cover in the sidewalk above.
908 J Street, Hollow Sidewalk

Street retaining wall, looking northwest (Page & Turnbull, 03/2009)

Starred manhole cover in sidewalk above 908 J Street hollow sidewalk segment (Page & Turnbull, 03/2009)
The building at 910 J Street is located on the south side of J Street, between 9th and 10th streets, and contains one hollow sidewalk segment. The 910 J Street hollow sidewalk segment is not currently utilized. It parallels J Street and features a brick building wall that supports the 910 J Street building on the south, and butressed brick street retaining walls on the north. The building wall features three door openings surmounted by concrete lintels; only the easternmost door has not been infilled, however. The hollow sidewalk segment is enclosed at its east and west ends by brick walls, features a concrete floor, and is capped by a ceiling reinforced with steel I-beams supported by transverse beams and metal posts.

*P3b. Resource Attributes: (list attributes and codes) HP39. Other

*P4. Resources Present: ☑Building ☑Structure ☑Object ☑Site ☑District ☑Element of District ☑Other

*P5b. Photo: (view and date)
Brick building wall with door openings, looking south
02/2009

*P6. Date Constructed/Age and Sources: ☑Historic
1868
HEC, 2009.

*P7. Owner and Address:
Kenny/Kathleen Wong
Living Trust
5421 Pleasant Drive,
Sacramento, CA 95822

*P8. Recorded by:
Page & Turnbull, Inc. (MEG)
2401 C Street, Ste. B
Sacramento, CA 95816

*P9. Date Recorded:
05/16/2009

*P10. Survey Type:
Reconnaissance

*P11. Report Citation: (Cite survey report and other sources, or enter “none”) Raised Streets and Hollow Sidewalks Survey Report

*Attachments: ☑None ☑Location Map ☑Sketch Map ☑Continuation Sheet ☑Building, Structure, and Object Record ☑Archaeological Record ☑District Record ☑Linear Feature Record ☑Milling Station Record ☑Rock Art Record ☑Artifact Record ☑Photograph Record ☑Other (list)

DPR 523A (1/95) *Required information
Street retaining wall, looking northwest (Page & Turnbull, 02/2009)

Brick end wall, looking west (Page & Turnbull, 02/2009)
State of California — The Resources Agency

DEPARTMENT OF PARKS AND RECREATION

PRIMARY RECORD

<table>
<thead>
<tr>
<th>Other Listings</th>
<th>Review Code</th>
<th>Reviewer</th>
<th>Date</th>
</tr>
</thead>
</table>

P1. Other Identifier:

- **P2. Location:**
 - [] Not for Publication [X] Unrestricted
 - [] Restricted
 - [] County:
 - Sacramento
 - (P2b and P2c or P2d. Attach a Location Map as necessary.)
 - [] City:
 - Sacramento
 - [] Zip:
 - 95814
 - [] Date:
 - 1998
 - [] UTM:
 - Zone:
 - mE/
 - mN (G.P.S.)
 - [] Other Locational Data:
 - Assessor’s Parcel Number (Map, Block, Lot):
 - 00601010100000

P3a. Description:

The building at 918 J Street is located on the south side of J Street, between 9th and 10th streets, and features one hollow sidewalk segment. The 918 J Street hollow sidewalk segment is not currently utilized. The hollow sidewalk segment parallels J Street and features a brick building wall that supports the 918 J Street building on the south, and a buttressed brick street retaining wall on the north. The building wall contains a door opening with a wood frame and threshold, and two window openings which appear to have been created by infilling the lower half of former door openings with brick. The window openings include wood frames and sills. The hollow sidewalk segment is enclosed at its east and west ends by brick end walls, features a concrete floor, and is capped by a concrete slab ceiling that is supported by heavy timber posts and beams.

P3b. Resource Attributes:

- (list attributes and codes)
 - HP39. Other

P4. Resources Present:

- [] Building
- [X] Structure
- [] Object
- [] Site
- [] District
- [] Element of District
- [] Other

<table>
<thead>
<tr>
<th>P5b. Photo:</th>
<th>(view and date)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brick building wall with partially infilled opening, looking south</td>
<td></td>
</tr>
<tr>
<td>02/2009</td>
<td></td>
</tr>
</tbody>
</table>

P6. Date Constructed/Age and Sources:

- [X] Historic
- [] Other
- 1868
- HEC, 2009.

P7. Owner and Address:

- City Centre Properties
- Revocable Trust
- P.O. Box 15453
- Sacramento, CA

P8. Recorded by:

- Page & Turnbull, Inc. (MEG)
- 2401 C Street, Ste. B
- Sacramento, CA 95816

P9. Date Recorded:

- 05/16/2009

P10. Survey Type:

- [] Reconnaissance

P11. Report Citation:

- (Cite survey report and other sources, or enter “none”)
 - Raised Streets and Hollow Sidewalks Survey Report

Attachments:

- [] None
- [] Location Map
- [] Sketch Map
- [X] Continuation Sheet
- [] Building, Structure, and Object Record
- [] Archaeological Record
- [] District Record
- [] Linear Feature Record
- [] Milling Station Record
- [] Rock Art Record
- [] Artifact Record
- [] Photograph Record
- [] Other (list)

DPR 523A (1/95)

Required information
Street retaining wall and timber supports, looking northeast (Page & Turnbull, 05/2009)

Detail of window opening and timber supports, looking south (Page & Turnbull, 05/2009)
Description:

The building at 1000 J Street is located on the southeast corner of the intersection of 10th and J streets and contains two segments of hollow sidewalks. The northern sidewalk segment, paralleling J Street, currently functions as a storage space. This segment features a wall clad with drywall that support the 1000 J Street building on the south and a buttressed brick street retaining wall on the north. The northern hollow sidewalk segment is enclosed at its east end by a plywood partition. The western hollow sidewalk segment parallels 10th Street. A wall clad in drywall supports the 1000 J Street building on the east side of the sidewalk and a buttressed brick street retaining wall supports the sidewalk on the west. The south end of the segment terminates in a brick wall. A hole in this brick partition reveals that the hollow sidewalk along 10th Street continues to the J/K Alley. Both hollow sidewalk segments feature concrete flooring and a concrete slab ceiling. The hollow sidewalk is accessed by an elevator on 10th Street and includes a starred manhole cover near the intersection of 10th Street and the J/K Alley.

Resources Present:

- Building
- Structure
- Site
- District
- Element of District
- Other

Photo:

Western segment, street retaining wall, looking south

02/2009

Date Constructed/Age and Sources:

Historic

ca. 1870

Owner and Address:

Abukhdair Ismail

1301 Sierra Oaks Court

Newcastle, CA 95658

Recorded by:

Page & Turnbull, Inc. (MEG)

2401 C Street, Ste. B

Sacramento, CA 95816

Date Recorded:

05/18/2009

Survey Type:

Reconnaissance
1000 J Street, Hollow Sidewalk

05/18/2009

Western hollow sidewalk segment looking south through hole in end wall toward J/K Alley (Page & Turnbull, 05/2009)

Elevator, 10th Street (Page & Turnbull, 05/2009)
State of California — The Resources Agency
DEPARTMENT OF PARKS AND RECREATION
PRIMARY RECORD

<table>
<thead>
<tr>
<th>Other Listings</th>
<th>Review Code</th>
<th>Reviewer</th>
<th>Date</th>
</tr>
</thead>
</table>

Page 1 of 2
Resource name(s) or number (assigned by recorder): 1012 J Street, Hollow Sidewalk

P1. Other Identifier:

<table>
<thead>
<tr>
<th>P2. Location:</th>
<th>Unrestricted</th>
<th>*a. County: Sacramento</th>
</tr>
</thead>
</table>
and (P2b and P2c or P2d. Attach a Location Map as necessary.)

<table>
<thead>
<tr>
<th>b. USGS 7.5' Quad:</th>
<th>Sacramento East</th>
</tr>
</thead>
<tbody>
<tr>
<td>c. Address:</td>
<td>1012 J Street, Sacramento</td>
</tr>
<tr>
<td>City:</td>
<td>Sacramento</td>
</tr>
<tr>
<td>Zip:</td>
<td>95814</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>d. UTM: Zone:</th>
<th>mE/ mN (G.P.S.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>e. Other Locational Data: Assessor’s Parcel Number (Map, Block, Lot):</td>
<td>00601030190000</td>
</tr>
</tbody>
</table>

P3a. Description:
(Describe resource and its major elements. Include design, materials, condition, alterations, size, setting, and boundaries.)

The building at 1012 J Street is located on the south side of J Street, between 10th and 11th streets, and features one hollow sidewalk segment that parallels J Street. The hollow sidewalk segment currently functions as a storage area. It features brick piers with corbelled bases and brackets that support the 1012 J Street building on the south, and butressed brick street retaining walls clad in stucco on the north. The hollow sidewalk segment is enclosed at its east and west ends by stucco-clad brick end walls. The hollow sidewalk segment features concrete flooring and concrete slab ceiling. An elevator accesses the hollow sidewalk segment from street level.

P3b. Resource Attributes:
(list attributes and codes)
HP39. Other

P4. Resources Present:
[] Building [x] Structure [] Object [] Site [] District [] Element of District [] Other

P5b. Photo:
(view and date)

1012 J Street hollow sidewalk, looking east
03/2009

P6. Date Constructed/Age and Sources:
[] Historic
ca. 1870

P7. Owner and Address:
Patino Lorenzo E/Nelly
928 Stern Circle
Sacramento, CA 95822

P8. Recorded by:
Page & Turnbull, Inc. (MEG)
2401 C Street, Ste. B
Sacramento, CA 95816

P9. Date Recorded:
05/19/2009

P10. Survey Type:
Reconnaissance

P11. Report Citation:
(Cite survey report and other sources, or enter “none”)
Raised Streets and Hollow Sidewalks Survey Report

Attachments:
[] None
[] Location Map
[] Sketch Map
[] Continuation Sheet
[] Building, Structure, and Object Record
[] Archaeological Record
[] District Record
[] Linear Feature Record
[] Milling Station Record
[] Rock Art Record
[] Artifact Record
[] Photograph Record
[] Other (list)

DPR 523A (1/95)
Required information
Resource Name or # (Assigned by recorder)	1012 J Street, Hollow Sidewalk
Recorded by | Page & Turnbull
Date | 05/19/2009

- Detail of a corbelled bracket on one of the brick piers that supports the building wall. (Page & Turnbull, 04/2009)

- Elevator access to J Street (Page & Turnbull, 04/2009)
State of California — The Resources Agency

DEPARTMENT OF PARKS AND RECREATION

PRINCIPAL RECORD

<table>
<thead>
<tr>
<th>Other Listings</th>
<th>Review Code</th>
<th>Reviewer</th>
<th>Date</th>
</tr>
</thead>
</table>

| Page 1 of 2 | *Resource name(s) or number (assigned by recorder)* | 1208 J Street, Hollow Sidewalk |

P1. Other Identifier:

*P2. Location: [] Not for Publication [] Unrestricted

and (P2b and P2c or P2d. Attach a Location Map as necessary.)

*P2a. County: Sacramento

*P2b. USGS 7.5’ Quad: Sacramento East

*P2c. Address: 1208 J Street, Sacramento

*P2d. City: Sacramento

*P2e. Zip: 95814

P3a. Description: (Describe resource and its major elements. Include design, materials, condition, alterations, size, setting, and boundaries.)

The building at 1208 J Street is located on the south side of J Street, between 12th and 13th streets, and contains one hollow sidewalk segment. The 1208 J Street hollow sidewalk segment currently functions as a storage area. The hollow sidewalk segment parallels J Street and features concrete piers that support the 1208 J Street building on the south, and poured concrete street retaining walls on the north. The hollow sidewalk segment is enclosed at its east and west ends by concrete walls. The hollow sidewalk segment features a concrete floor and a concrete slab ceiling. An elevator originally provided access to the hollow sidewalk space from the street level, but has been removed.

P3b. Resource Attributes: (list attributes and codes)

HP39 Other

P4. Resources Present:

[] Building [] Structure [] Object [] Site [] District [] Element of District [] Other

P5b. Photo: (view and date)

Concrete piers supporting building, looking southeast

03/2009

P6. Date Constructed/Age and Sources:

[] Historic

ca. 1870

P7. Owner and Address:

George L/Bonnie L Procida

1208 J Street

Sacramento, CA 95814

P8. Recorded by:

Page & Turnbull, Inc. (MEG)

2401 C Street, Ste. B

Sacramento, CA 95816

P9. Date Recorded:

05/20/2009

P10. Survey Type:

Reconnaissance

P11. Report Citation: (Cite survey report and other sources, or enter “none”)

Raised Streets and Hollow Sidewalks Survey Report

Attachments:

[] None [] Location Map [] Sketch Map [] Continuation Sheet [] Building, Structure, and Object Record

[] Archaeological Record [] District Record [] Linear Feature Record [] Milling Station Record [] Rock Art Record

[] Artifact Record [] Photograph Record [] Other (list)

DPR 523A (1/95)

Required information
Concrete street retaining wall, looking north (Page & Turnbull, 04/2009)

Exterior sidewalk surface above hollow sidewalk, looking east. Concrete patch indicating infilled elevator hatch visible at left. (Page & Turnbull, 04/2009)
P1. Other Identifier:

| Resource name(s) or number (assigned by recorder) | 111-113 K Street, Hollow Sidewalk |

P2. Location:

- Not for Publication
- Unrestricted

*P2a. County: Sacramento

P2b. USGS 7.5’ Quad:

- Sacramento West
- Date: 1998

P2c. Address:

- 111-113 K Street, Sacramento
- City: Sacramento
- Zip: 95814

P2d. UTM: Zone:

- mE/mN (G.P.S.)

P2e. Other Locational Data:

- Assessor’s Parcel Number (Map, Block, Lot): 0060071056000

P3a. Description:

Two buildings, one at 111-113 and the other at 115-119 K Street, stand on this parcel. The building at 111-113 K Street is located on the north side of K Streets, between Front and 2nd streets, and contains one hollow sidewalk segment. The 111-113 K Street hollow sidewalk segment parallels K Street and currently functions as a storage area. Brick walls, containing small metal frame vents in arched window openings infilled with brick, support the 111-113 K Street building on the north. Brick buttressed street retaining walls support the sidewalk on the south. The hollow sidewalk segment terminates in brick walls at its east and west ends. The hollow sidewalk segment features concrete flooring and a concrete slab ceiling.

P3b. Resource Attributes:

- HP39. Other

P4. Resources Present:

- Building
- Structure
- Object
- Site
- District
- Element of District
- Other

P5b. Photo:

- Hollow sidewalk, looking southwest
- View and date: 03/2009

P6. Date Constructed/Age and Sources:

- Historic 1865
- HEC, 2009.

P7. Owner and Address:

- Corcos Family Trust
- 4780 Lakeside Way
- Fair Oaks, CA 95628

P8. Recorded by:

- Page & Turnbull, Inc. (MEG)
- 2401 C Street, Ste. B
- Sacramento, CA 95816

P9. Date Recorded:

- 05/25/2009

P10. Survey Type:

- Reconnaissance

P11. Report Citation:

- Raised Streets and Hollow Sidewalks Survey Report

Attachments:

- None
- Location Map
- Sketch Map
- Continuation Sheet
- Building, Structure, and Object Record
- Archaeological Record
- District Record
- Linear Feature Record
- Milling Station Record
- Rock Art Record
- Artifact Record
- Photograph Record
- Other (list)

DPR 523A (1/95)
<table>
<thead>
<tr>
<th>Resource Name or # (Assigned by recorder)</th>
<th>111-113 K Street, Hollow Sidewalk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recorded by:</td>
<td>Page & Turnbull</td>
</tr>
<tr>
<td>Date</td>
<td>05/25/2009</td>
</tr>
<tr>
<td>Continuation Update</td>
<td>☒</td>
</tr>
</tbody>
</table>

- Brick building wall below 111-113 K Street, showing infilled window openings with metal vents, looking northeast (Page & Turnbull, 04/2009)

- Inside the basement, rectangular window opening in the wall supporting 111-113 K Street, looking south (Page & Turnbull, 04/2009)
State of California — The Resources Agency
DEPARTMENT OF PARKS AND RECREATION
PRIMARY RECORD

<table>
<thead>
<tr>
<th>Other Listings</th>
<th>Review Code</th>
<th>Reviewer</th>
<th>Date</th>
</tr>
</thead>
</table>

P1. Other Identifier:

<table>
<thead>
<tr>
<th>*P2. Location:</th>
<th>Not for Publication ☒Unrestricted</th>
<th>*a. County: Sacramento</th>
</tr>
</thead>
</table>
and (P2b and P2c or P2d. Attach a Location Map as necessary.)

<table>
<thead>
<tr>
<th>*b. USGS 7.5' Quad:</th>
<th>Sacramento West</th>
<th>Date: 1998</th>
</tr>
</thead>
<tbody>
<tr>
<td>*c. Address:</td>
<td>115-119 K Street, Sacramento</td>
<td>City: Sacramento Zip: 95814</td>
</tr>
<tr>
<td>d. UTM: Zone:</td>
<td>mE/ mN (G.P.S.)</td>
<td>0060071056000</td>
</tr>
<tr>
<td>e. Other Locational Data: Assessor's Parcel Number (Map, Block, Lot):</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*P3a. Description: (Describe resource and its major elements. Include design, materials, condition, alterations, size, setting, and boundaries.)

Two buildings, one at 111-113 and the other at 115-119 K Street, stand on the parcel. The building at 115-119 K Street is located on the north side of K Street, between Front and 2nd streets, and features one hollow sidewalk segment. The 115-119 K Street hollow sidewalk segment currently functions as a storage area and workshop. This hollow sidewalk segment parallels K Street and features concrete frame brick walls that support the 115-119 K Street building on the north. On the south and east, buttressed brick street retaining walls parallel K Street and Firehouse Alley, respectively. The brick building walls below 115-119 K Street feature brick infilled arched window and door openings. The hollow sidewalk segment is enclosed at its west end by a brick wall. The hollow sidewalk segment features a concrete floor and a concrete slab ceiling that is supported at intervals by poured concrete columns.

*P3b. Resource Attributes: (list attributes and codes) HP39. Other

*P4. Resources Present: ☑Building ☒Structure ☑Object ☑Site ☑District ☑Element of District ☑Other

P5b. Photo: (view and date)

Brick building wall below 121 K Street, looking north
04/2009

*P6. Date Constructed/Age and Sources: ☑Historic

1865
HEC, 2009.

*P7. Owner and Address:

Harris-Winkle Building Ltd.
2819 Crow Canyon Road 200
San Ramon, CA 94583

*P8. Recorded by:

Page & Turnbull, Inc. (MEG)
2401 C Street, Ste. B
Sacramento, CA 95816

*P9. Date Recorded:

05/26/2009

*P10. Survey Type:

Reconnaissance

*P11. Report Citation: (Cite survey report and other sources, or enter “none”)

Raised Streets and Hollow Sidewalks Survey Report

*Attachments: ☑None ☐Location Map ☐Sketch Map ☒Continuation Sheet ☑Building, Structure, and Object Record
 ☑Archaeological Record ☐District Record ☐Linear Feature Record ☐Milling Station Record ☐Rock Art Record
 ☐Artifact Record ☑Photograph Record ☐Other (list)

DPR 523A (1/95) *Required information
Brick buttressed street retaining walls, looking east (Page & Turnbull, 04/2009)

Brick buttressed street retaining walls, looking south (Page & Turnbull, 04/2009)
The lot at 116 K Street is located on the southeast corner of the intersection of K Street and Firehouse Alley and features two hollow sidewalk segments in an L-shaped configuration that wraps the street corner. The western leg of the 116 K Street hollow sidewalk segment parallels Firehouse Alley and the northern leg parallels K Street. The hollow sidewalk segments border a parking lot. The hollow sidewalk is open to the exterior on the south and east sides and concrete columns support the overhanging concrete sidewalk that creates the ceiling of the hollow sidewalk segment. Brick buttressed street retaining walls support the west and north edges of the sidewalk. The hollow sidewalk segment terminates in a poured concrete wall at the south end of the western leg, and a concrete block wall at the east end of the northern leg. The hollow sidewalk segment features concrete flooring and a concrete slab ceiling.

*P3b. Resource Attributes: (list attributes and codes) HP39. Other

*P4. Resources Present: Building Structure Object Site District Element of District Other

P5b. Photo: (view and date)
Northern leg of the hollow sidewalk segment, looking northeast
04/2009

*P6. Date Constructed/Age and Sources: Historic
1865
HEC, 2009.

*P7. Owner and Address:
Redevelopment Agency
City of Sacramento
630 I Street
Sacramento, CA 95814

*P8. Recorded by:
Page & Turnbull, Inc. (MEG)
2401 C Street, Ste. B
Sacramento, CA 95816

*P9. Date Recorded:
05/25/2009

*P10. Survey Type:
Reconnaissance

*P11. Report Citation: (Cite survey report and other sources, or enter “none”) Raised Streets and Hollow Sidewalks Survey Report

*Attachments: None Location Map Sketch Map Continuation Sheet Building, Structure, and Object Record Archaeological Record District Record Linear Feature Record Milling Station Record Rock Art Record Artifact Record Photograph Record Other (list)
<table>
<thead>
<tr>
<th>Resource Name or # (Assigned by recorder)</th>
<th>116 K Street, Hollow Sidewalk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recorded by:</td>
<td>Page & Turnbull</td>
</tr>
<tr>
<td>Date</td>
<td>05/25/2009</td>
</tr>
<tr>
<td></td>
<td>Continuation</td>
</tr>
</tbody>
</table>

Western leg of the hollow sidewalk segment, looking north (Page & Turnbull, 04/2009)
The building at 126 K Street is located on the south side of K Street, between Front and 2nd streets, and contains one hollow sidewalk segment. The 126 K Street hollow sidewalk segment parallels K Street and currently functions as a storage area. The hollow sidewalk segment is supported by concrete block walls on both the north (street retaining wall) and south (building wall). A flush metal door leads from the basement of 126 K Street into the hollow sidewalk segment. The hollow sidewalk segment terminates in walls clad in drywall at its east and west ends. The hollow sidewalk segment features a carpeted, concrete floor and a drywalled ceiling.

P3a. Description:
(Describe resource and its major elements. Include design, materials, condition, alterations, size, setting, and boundaries.)

The building at 126 K Street is located on the south side of K Street, between Front and 2nd streets, and contains one hollow sidewalk segment. The 126 K Street hollow sidewalk segment parallels K Street and currently functions as a storage area. The hollow sidewalk segment is supported by concrete block walls on both the north (street retaining wall) and south (building wall). A flush metal door leads from the basement of 126 K Street into the hollow sidewalk segment. The hollow sidewalk segment terminates in walls clad in drywall at its east and west ends. The hollow sidewalk segment features a carpeted, concrete floor and a drywalled ceiling.

P5b. Photo:
(view and date)
Hollow sidewalk, looking northeast
02/2009

P6. Date Constructed/Age and Sources:
Historic 1865
HEC, 2009.
Hollow sidewalk segment, looking north (Page & Turnbull, 02/2009)

Hollow sidewalk segment, looking south at the building wall and showing door into building basement. (Page & Turnbull, 02/2009)
The building at 704 K Street is located on the southeast corner of the intersection of 7th and K Streets and contains two hollow sidewalks segments. The 704 K Street hollow sidewalk segments were finished to serve as storage for a retail shop, but are not currently utilized. The western hollow sidewalk segment parallels 7th Street and features poured concrete street retaining walls on the west and concrete piers that support the 704 K Street building on the east. This hollow sidewalk segment is enclosed on its north and south ends by poured concrete walls. The northern hollow sidewalk segment parallels K Street. Brick street retaining walls are located along the north side of the segment and the building wall, which is finished with wood paneling, is located on its south side. The east and west ends of the segment terminate in brick walls. Both hollow sidewalk segments feature concrete floors and concrete slab ceilings.

P3a. Description: (Describe resource and its major elements. Include design, materials, condition, alterations, size, setting, and boundaries.)

The building at 704 K Street is located on the southeast corner of the intersection of 7th and K Streets and contains two hollow sidewalks segments. The 704 K Street hollow sidewalk segments were finished to serve as storage for a retail shop, but are not currently utilized. The western hollow sidewalk segment parallels 7th Street and features poured concrete street retaining walls on the west and concrete piers that support the 704 K Street building on the east. This hollow sidewalk segment is enclosed on its north and south ends by poured concrete walls. The northern hollow sidewalk segment parallels K Street. Brick street retaining walls are located along the north side of the segment and the building wall, which is finished with wood paneling, is located on its south side. The east and west ends of the segment terminate in brick walls. Both hollow sidewalk segments feature concrete floors and concrete slab ceilings.

P3b. Resource Attributes: (list attributes and codes) HP39. Other

P4. Resources Present: ☑ Building ☑ Structure ☐ Object ☐ Site ☐ District ☐ Element of District ☐ Other

P5b. Photo: (view and date)

Western segment, looking east (?) through building wall

02/2009

P6. Date Constructed/Age and Sources: ☑ Historic

1868

HEC, 2009.

P7. Owner and Address:

Redevelopment Agency

City of Sacramento

630 I Street

Sacramento, CA 95814

P8. Recorded by:

Page & Turnbull, Inc. (MEG)

2401 C Street, Ste. B

Sacramento, CA 95816

P9. Date Recorded:

05/25/2009

P10. Survey Type:

Reconnaissance

P11. Report Citation: (Cite survey report and other sources, or enter “none”)

Raised Streets and Hollow Sidewalks Survey Report

Required information
Western segment, poured concrete street retaining walls on the west and north, looking west (Page & Turnbull, 02/2009)

North segment, brick street retaining wall looking north (Page & Turnbull, 02/2009)
The building at 708 K Street is located on the south side of K Street, between 7th and 8th streets, and features one hollow sidewalk segment. The 708 K Street hollow sidewalk segment parallels K Street and currently houses electrical equipment. Brick building walls support the 708 K Street building on the south and brick buttressed street retaining walls support the sidewalk on the north. Door openings are located in the brick building wall. The hollow sidewalk segment terminates in a concrete block wall on the east and a brick wall on the west. Electrical equipment is located on the west end wall. The hollow sidewalk segment features a concrete floor and a concrete slab ceiling that is supported at intervals by poured concrete columns.

P3a. Description: (Describe resource and its major elements. Include design, materials, condition, alterations, size, setting, and boundaries.)

The building at 708 K Street is located on the south side of K Street, between 7th and 8th streets, and features one hollow sidewalk segment. The 708 K Street hollow sidewalk segment parallels K Street and currently houses electrical equipment. Brick building walls support the 708 K Street building on the south and brick buttressed street retaining walls support the sidewalk on the north. Door openings are located in the brick building wall. The hollow sidewalk segment terminates in a concrete block wall on the east and a brick wall on the west. Electrical equipment is located on the west end wall. The hollow sidewalk segment features a concrete floor and a concrete slab ceiling that is supported at intervals by poured concrete columns.

P3b. Resource Attributes: (list attributes and codes)

HP39. Other

P4. Resources Present:

- Building
- Structure
- Object
- Site
- District
- Element of District
- Other

P5b. Photo: (view and date)

Hollow sidewalk, street retaining wall & end wall looking northeast

02/2009

P6. Date Constructed/Age and Sources:

- 1868
- Historic
- HEC, 2009.

P7. Owner and Address:

Redevelopment Agency
City of Sacramento
630 I Street
Sacramento, CA 95814

P8. Recorded by:

Page & Turnbull, Inc. (MEG)
2401 C Street, Ste. B
Sacramento, CA 95816

P9. Date Recorded:

05/25/2009

P10. Survey Type:

Reconnaissance

P11. Report Citation: (Cite survey report and other sources, or enter “none”) Raised Streets and Hollow Sidewalks Survey Report

*Required information
Brick building wall below 708 K Street, looking southwest, showing door openings and concrete columns supporting the ceiling. (Page & Turnbull, 02/2009)

Looking west at electrical equipment located on west end wall (Page & Turnbull, 02/2009)
The building at 718 K Street is located on the south side of K Street, between 7th and 8th streets, and contains one hollow sidewalk segment. The 718 K Street hollow sidewalk segment parallels K Street and currently houses electrical equipment. Hollow clay tile building walls support the 718 K Street building on the south and concrete block street retaining walls which stand on a concrete foundation support the sidewalk on the north. The building wall is pierced by door openings with flush metal doors. The hollow sidewalk segment terminates in poured concrete walls at its east and west ends. The hollow sidewalk segment features a concrete floor and a concrete slab ceiling.

*P3b. Resource Attributes: (list attributes and codes) HP39. Other

*P4. Resources Present: [] Building [] Structure [] Object [] Site [] District [] Element of District [] Other

*P5b. Photo: (view and date)
Hollow sidewalk, looking north and up at the concrete capping
02/2009

*P6. Date Constructed/Age and Sources: [] Historic
1868
HEC, 2009.

*P7. Owner and Address:
718 K Street, LLC
1025 9th Street, 205
Sacramento, CA 95814

*P8. Recorded by:
Page & Turnbull, Inc. (MEG)
2401 C Street, Ste. B
Sacramento, CA 95816

*P9. Date Recorded:
05/25/2009

*P10. Survey Type:
Reconnaissance

*P11. Report Citation: (Cite survey report and other sources, or enter “none”) Raised Streets and Hollow Sidewalks Survey Report

*Required information
<table>
<thead>
<tr>
<th>Resource Name or # (Assigned by recorder)</th>
<th>718 K Street, Hollow Sidewalk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recorded by:</td>
<td>Page & Turnbull</td>
</tr>
<tr>
<td>Date</td>
<td>05/25/2009</td>
</tr>
<tr>
<td>Continuation</td>
<td>Update</td>
</tr>
</tbody>
</table>

Electrical equipment along concrete block wall, looking north (Page & Turnbull, 02/2009)

Looking north through hollow clay tile building wall below 718 K Street into hollow sidewalk space (Page & Turnbull, 02/2009)
The building at 724 K Street is located on the southwest corner of K Street and 8th Street and features two segments of hollow sidewalks. The 724 K Street hollow sidewalk segments are not currently utilized. The eastern hollow sidewalk segment parallels 8th Street and features poured concrete building walls that support the 724 K Street building on the west, and buttressed brick street retaining walls on the east. This hollow sidewalk segment is enclosed at its north end by a poured concrete wall and at its south end by a brick wall. The northern hollow sidewalk segment parallels K Street. A brick building wall supports the 724 K Street building on the south, and the concrete block wall street retaining wall stands approximately 6 inches north of the brick building wall, creating a narrow cavity that is accessed by door openings with wood panel doors. Some small openings and corbelling are visible on the brick building wall within the cavity. The west end of the northern hollow sidewalk segment terminates in a brick wall and the east end is enclosed by plywood. Both hollow sidewalk segments feature concrete floors and a concrete slab ceiling lined with metal rebar.

*P3b. Resource Attributes: (list attributes and codes) HP39. Other

*P4. Resources Present: ☑ Building ☑ Structure ☑ Object ☑ Site ☑ District ☑ Element of District ☑ Other

P5b. Photo: (view and date)
Eastern hollow sidewalk segment, looking southeast
02/2009

*P6. Date Constructed/Age and Sources: ☑ Historic
1868
HEC, 2009.

*P7. Owner and Address:
Mohammed H Mohanna
630 I Street
Sacramento, CA 95814

*P8. Recorded by:
Page & Turnbull, Inc. (MEG)
2401 C Street, Ste. B
Sacramento, CA 95816

*P9. Date Recorded:
05/25/2009

*P10. Survey Type:
Reconnaissance

*P11. Report Citation: (Cite survey report and other sources, or enter "none") Raised Streets and Hollow Sidewalks Survey Report

*Attachments: ☑ None ☑ Location Map ☑ Sketch Map ☑ Continuation Sheet ☑ Building, Structure, and Object Record ☑ Archaeological Record ☑ District Record ☑ Linear Feature Record ☑ Milling Station Record ☑ Rock Art Record ☑ Artifact Record ☑ Photograph Record ☑ Other (list)

DPR 523A (1/95)

*Required information
Northern segment, concrete block wall visible through door opening in brick building wall below 724 K Street (Page & Turnbull, 02/2009)

Cavity between concrete block street retaining wall and brick building wall within northern sidewalk segment, looking southwest and up (Page & Turnbull, 02/2009)
The building at 726 K Street is located on the south side of K Street, between 7th and 8th streets, and features one hollow sidewalk segment. The 726 K Street hollow sidewalk segment parallels K Street and is not currently utilized. Brick building walls support the 726 K Street building on the south; the south side of this wall is visible from within the building's basement, but because a second, concrete block wall parallels the brick wall on its north side, it is not readily visible from within the hollow sidewalk. Plywood covers what appear to be openings in the brick building wall. On the north, the hollow sidewalk segment is supported by brick butressed street retaining walls. The hollow sidewalk segment terminates in poured concrete walls at its east and west ends. The hollow sidewalk segment features a concrete floor and a steel reinforced concrete slab ceiling.

P3a. Description: (Describe resource and its major elements. Include design, materials, condition, alterations, size, setting, and boundaries.)

The building at 726 K Street is located on the south side of K Street, between 7th and 8th streets, and features one hollow sidewalk segment. The 726 K Street hollow sidewalk segment parallels K Street and is not currently utilized. Brick building walls support the 726 K Street building on the south; the south side of this wall is visible from within the building's basement, but because a second, concrete block wall parallels the brick wall on its north side, it is not readily visible from within the hollow sidewalk. Plywood covers what appear to be openings in the brick building wall. On the north, the hollow sidewalk segment is supported by brick butressed street retaining walls. The hollow sidewalk segment terminates in poured concrete walls at its east and west ends. The hollow sidewalk segment features a concrete floor and a steel reinforced concrete slab ceiling.

P3b. Resource Attributes: (list attributes and codes)
HP39. Other

P4. Resources Present:
Box Structure

P5b. Photo: (view and date)
Hollow sidewalk, looking north at brick street retaining walls

P6. Date Constructed/Age and Sources:
1868

P7. Owner and Address:
726 K Street, LLC/Urban Innovation Partners, LLC

P8. Recorded by:
Page & Turnbull, Inc. (MEG)

P9. Date Recorded:
05/25/2009

P10. Survey Type:
Reconnaissance

P11. Report Citation: (Cite survey report and other sources, or enter “none”)
Raised Streets and Hollow Sidewalks Survey Report

Attachments:
None Location Map None Sketch Map Continuation Sheet Building, Structure, and Object Record Archaeological Record District Record Linear Feature Record Milling Station Record Rock Art Record Artifact Record Photograph Record Other (list)

DPR 523A (1/95)
*Required information
Brick building wall below 726 K Street and concrete block support wall, looking south (Page & Turnbull, 02/2009)

Elevator hatch, looking north and up (Page & Turnbull, 02/2009)
The building at 730 K Street is located on the southwest corner of the intersection of 8th and K streets and contains two segments of hollow sidewalks; only the eastern hollow sidewalk segment was accessible for survey, as the northern segment paralleling K Street has been sealed off. The eastern 730 K Street hollow sidewalk segment parallels 8th Street and is not currently utilized. Brick piers with corbelled bases and a brick building wall supports the 730 K Street building on the west side of the hollow sidewalk segment and poured concrete street retaining walls are located on the east. The brick building wall includes a door opening with a wood frame and threshold, and an arched window opening. The hollow sidewalk segment terminates in plywood partitions at its north and south ends. The hollow sidewalk segment features a concrete floor and a steel reinforced concrete slab ceiling.

*P3a. Description: (Describe resource and its major elements. Include design, materials, condition, alterations, size, setting, and boundaries.)

The building at 730 K Street is located on the southwest corner of the intersection of 8th and K streets and contains two segments of hollow sidewalks; only the eastern hollow sidewalk segment was accessible for survey, as the northern segment paralleling K Street has been sealed off. The eastern 730 K Street hollow sidewalk segment parallels 8th Street and is not currently utilized. Brick piers with corbelled bases and a brick building wall supports the 730 K Street building on the west side of the hollow sidewalk segment and poured concrete street retaining walls are located on the east. The brick building wall includes a door opening with a wood frame and threshold, and an arched window opening. The hollow sidewalk segment terminates in plywood partitions at its north and south ends. The hollow sidewalk segment features a concrete floor and a steel reinforced concrete slab ceiling.

*P3b. Resource Attributes: (list attributes and codes) HP39. Other

*P4. Resources Present: ☑ Building ☑ Structure ☐ Object ☐ Site ☐ District ☐ Element of District ☐ Other

P5b. Photo: (view and date)

Eastern hollow sidewalk segment, looking west at building wall
02/2009

*P6. Date Constructed/Age and Sources: ☑ Historic

1868
HEC, 2009.

*P7. Owner and Address:

Redevelopment Agency
City of Sacramento
630 I Street
Sacramento, CA 95814

*P8. Recorded by:

Page & Turnbull, Inc. (MEG)
2401 C Street, Ste. B
Sacramento, CA 95816

*P9. Date Recorded:

05/25/2009

*P10. Survey Type:

Reconnaissance

*P11. Report Citation: (Cite survey report and other sources, or enter “none”) Raised Streets and Hollow Sidewalks Survey Report

*Attachments: ☐ None ☑ Location Map ☐ Sketch Map ☑ Continuation Sheet ☑ Building, Structure, and Object Record ☐ Archaeological Record ☐ District Record ☐ Linear Feature Record ☐ Milling Station Record ☑ Rock Art Record ☐ Artifact Record ☑ Photograph Record ☐ Other (list)

DPR 523A (1/95) *Required information
State of California & The Resources Agency
DEPARTMENT OF PARKS AND RECREATION
CONTINUATION SHEET

<table>
<thead>
<tr>
<th>Page</th>
<th>2</th>
<th>of</th>
<th>2</th>
<th>*Resource Name or # (Assigned by recorder)</th>
<th>730 K Street, Hollow Sidewalk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recorded by:</td>
<td>Page & Turnbull</td>
<td>Date</td>
<td>05/25/2009</td>
<td>□ Continuation</td>
<td>☑ Update</td>
</tr>
</tbody>
</table>

Eastern segment, brick building wall with arched window opening, looking west (Page & Turnbull, 02/2009)

Eastern segment, plywood end partition, looking north (Page & Turnbull, 02/2009)
P1. Other Identifier:

P2. Location: ☑ Unrestricted a. County: Sacramento

P3a. Description: (Describe resource and its major elements. Include design, materials, condition, alterations, size, setting, and boundaries.)

The vacant lot at 801 K Street is located on the northeast corner of the intersection of 8th and K streets and contains two segments of hollow sidewalks; only the southern hollow sidewalk segment, paralleling K Street, was accessible for survey, as the western segment paralleling 8th Street is sealed off. The southern hollow sidewalk segment was converted to house bathrooms and storage spaces but is not currently utilized. Brick walls support the north edge of the hollow sidewalk, adjacent to the vacant lot, and poured concrete street retaining walls support the south edge of the hollow sidewalk. The brick walls include arched door openings. Poured concrete and wood frame partition walls divide the segment into distinct rooms. The hollow sidewalk segment terminates in brick walls at its east and west ends. The hollow sidewalk segment features a dirt floor and a concrete slab ceiling with sidewalk prism lights which allow light to enter the hollow sidewalk segment from above.

P3b. Resource Attributes: (list attributes and codes) HP39. Other

P4. Resources Present: ☑ Building ☑ Structure ☑ Object ☑ Site ☑ District ☑ Element of District ☑ Other

P5b. Photo: (view and date)

Hollow sidewalk segment, looking southwest from vacant lot
02/2009

P6. Date Constructed/Age and Sources: ☑ Historic 1868 HEC, 2009.

P7. Owner and Address:

Redevelopment Agency
City of Sacramento
630 I Street
Sacramento, CA 95814

P8. Recorded by:

Page & Turnbull, Inc. (MEG)
2401 C Street, Ste. B
Sacramento, CA 95816

P9. Date Recorded:

05/25/2009

P10. Survey Type:

Reconnaissance

P11. Report Citation: (Cite survey report and other sources, or enter “none”) Raised Streets and Hollow Sidewalks Survey Report

*Attachments: ☑ None ☑ Location Map ☑ Sketch Map ☑ Continuation Sheet ☑ Building, Structure, and Object Record ☑ Archaeological Record ☑ District Record ☑ Linear Feature Record ☑ Milling Station Record ☑ Rock Art Record ☑ Artifact Record ☑ Photograph Record ☑ Other (list)

DPR 523A (1/95)

*Required information
State of California & The Resources Agency
DEPARTMENT OF PARKS AND RECREATION
CONTINUATION SHEET

<table>
<thead>
<tr>
<th>Page 2 of 2</th>
<th>*Resource Name or # (Assigned by recorder)</th>
<th>801 K Street, Hollow Sidewalk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recorded by: Page & Turnbull</td>
<td>Date 05/25/2009</td>
<td>☒ Continuation ☐ Update</td>
</tr>
</tbody>
</table>

Southern segment, sidewalk prism lights, looking south and up (Page & Turnbull, 02/2009)

Southern segment, brick end wall, looking west (Page & Turnbull, 02/2009)
The building at 831 K Street is located on the northwest corner of the intersection of 8th and K Streets and contains two segments of hollow sidewalks. The 831 K Street hollow sidewalk segments are not currently utilized. The southern hollow sidewalk segment parallels K Street and features brick piers and hollow clay tile building walls that support the 831 K Street building on the north, and butressed brick street retaining walls on the south. This hollow sidewalk segment is enclosed at its west end by a brick wall and on its east end by brick buttressed retaining wall. The segment features a concrete slab ceiling. The eastern hollow sidewalk segment parallels 8th Street. Granite capped brick piers and hollow clay tile building walls support the 831 K Street building on the west side of the sidewalk, and a buttressed brick street retaining wall supports the sidewalk on the west. The south end of the segment terminates in a brick buttressed retaining wall and the north end is enclosed by brick wall. The segment features a brick barrel vaulted ceiling. Both hollow sidewalk segments feature concrete floors. The hollow sidewalk features infilled prism lights and an elevator hatch that provides access from street level. At street level, a granite curb is located at the corner of 8th Street and the J/K Alley.

*P3b. Resource Attributes: (list attributes and codes) HP39. Other

*P4. Resources Present: Building Structure Object Site District Element of District Other

P5b. Photo: (view and date)
Southern segment, looking north through brick piers into building basement
05/2009

*P6. Date Constructed/Age and Sources: Historic 1869-1876 HEC, 2009.

5046 Sunrise Boulevard
Fair Oaks, CA 95628

*P8. Recorded by: Page & Turnbull, Inc. (MEG)
2401 C Street, Ste. B
Sacramento, CA 95816

*P9. Date Recorded: 05/25/2009
Eastern segment, looking north (Page & Turnbull, 05/2009)

Eastern segment, detail of the brick barrel vaulted ceiling (Page & Turnbull, 05/2009)
State of California — The Resources Agency

DEPARTMENT OF PARKS AND RECREATION

PRIMARY RECORD

<table>
<thead>
<tr>
<th>Other Listings</th>
<th>Review Code</th>
<th>Reviewer</th>
<th>Date</th>
</tr>
</thead>
</table>

| 1011-1013 K Street, Hollow Sidewalk |

P1. Other Identifier:

- **Location:** □ Not for Publication ☒ Unrestricted
- **a. County:** Sacramento

- **b. USGS 7.5' Quad:** Sacramento East
- **c. Address:** 1101-1013 K Street, Sacramento
- **d. UTM: Zone:** mE/ mN (G.P.S.)
- **e. Other Locational Data:** Assessor’s Parcel Number (Map, Block, Lot): 0060103011000

P3a. Description:

The building at 1011-1013 K Street is located on the north side of K Street, between 10th and 11th streets, and contains one partitioned segment of hollow sidewalks, which parallels K Street. The hollow sidewalk segments below 1011-1013 K Street are not utilized. The western segment features a poured concrete wall that supports the 1011-1013 K Street building on the north and a brick and concrete butressed street retaining wall on the south. This hollow sidewalk segment is enclosed at its east and west ends by poured concrete end walls. Within the eastern segment, concrete piers support the 1011-1013 K Street building on the north and a brick butressed street retaining wall supports the sidewalk on the south. The east and west ends of this segment terminate in brick end walls. Both hollow sidewalk segments feature concrete flooring and a concrete slab ceiling. An elevator accesses the western hollow sidewalk segment, but the elevator hatch has been infilled at the street level.

P3b. Resource Attributes: (list attributes and codes) HP39. Other

P4. Resources Present: ☒ Building ☒ Structure ☐ Object ☐ Site ☐ District ☐ Element of District ☐ Other

P5b. Photo: (view and date)

Eastern segment, concrete building wall, looking northwest

04/2009

P6. Date Constructed/Age and Sources:

- **Historic ca. 1870**

P7. Owner and Address:

Charles Kennan McClatchy et al.

P.O. Box 13519

Arlington, TX

P8. Recorded by:

Page & Turnbull, Inc. (MEG)

2401 C Street, Ste. B

Sacramento, CA 95816

P9. Date Recorded:

05/21/2009

P10. Survey Type:

Reconnaissance

P11. Report Citation: (Cite survey report and other sources, or enter “none”)

Raised Streets and Hollow Sidewalks Survey Report

Attachments: ☐ None ☐ Location Map ☐ Sketch Map ☒ Continuation Sheet ☐ Building, Structure, and Object Record

☐ Archaeological Record ☐ District Record ☐ Linear Feature Record ☐ Milling Station Record ☐ Rock Art Record

☐ Artifact Record ☐ Photograph Record ☐ Other (list)

DPR 523A (1/95)

*Required information
Eastern segment, looking southwest at buttressed brick street retaining wall. (Page & Turnbull, 04/2009)

Western segment, looking south at former elevator. (Page & Turnbull, 04/2009)
Between 1864 and 1876, the streets in the area bounded by Front Street on the west, I Street on the north, 13th Street on the east, and L Street on the south were raised in response to perpetual flooding. Historically the primary thoroughfares in downtown Sacramento, J and K streets are the highest raised streets. The raised streets are most visible where the Firehouse and J/K alleys dip to the original grade level. In Old Sacramento, the Firehouse Alley runs perpendicular to J and K Streets; downtown, the J/K Alley parallels J and K Streets. The points where the alleys dip are most pronounced at the west end of J and K streets and lessen as the streets approach 10th Street, where they are nearly flat. Within the downtown grid, Caesar Chevez Park is a natural high point; therefore the alley dips to the east and west of the slope down from the park. The I/J and K/L alleys dip to the original grade level near 8th and 9th streets. The raised streets are comprised of street retaining walls which were filled with rubble. The raised streets are paved with asphalt.
Alley dip, J/K Alley between 8th and 7th streets, looking west (Page & Turnbull, 05/2009)

Looking west at Caesar Chevez Park from the entrance to the J/K Alley on 10th Street (Page & Turnbull, 05/2009)
DISTRICT EVALUATION (D FORM)
The Raised Streets and Hollow Sidewalks Historic District is located on the east side of the Sacramento River and includes portions of Old Sacramento and downtown Sacramento, which are physically divided by Interstate 5. Streets in the area are paved with asphalt. Sidewalks in Old Sacramento are comprised of concrete surfaced with wood planking. On the other side of I-5, sidewalks in downtown Sacramento are surfaced with concrete.

The Raised Streets and Hollow Sidewalks Historic District is bound on the west by Front Street, on the north by I Street, on the east by 13th Street, and on the south by L Street. The area roughly represents the area in which the City of Sacramento raised its streets by ten to fourteen feet between 1863 and 1879 in response to chronic flooding of the Sacramento and American rivers. The District centers on J and K streets which historically and currently are main thoroughfares through downtown Sacramento. (continued, p. 2)

*D5. Boundary Justification:

The boundary of the Raised Streets and Hollow Sidewalks Survey was based upon the map entitled, Hollow Sidewalk Evaluation Study, which was produced by structural engineer David Okaskai as part of the 1982 structural engineering report prepared by Barrish, Aldrich and Schroeter in which remaining raised streets and hollow sidewalks were studied. Maps depicting the streets raised as part of the 1863 and 1879 city project are conflicting; according to the 1982 Barrish, Aldrich and Schroeter report, 151 hollow sidewalk segments remained in Sacramento in 1982. Page & Turnbull's architectural survey of the Raised Streets and Hollow Sidewalks was based on the boundary of the 1982 report. Verifying the extent of the raised area downtown was not part of the scope. While it is likely that the raised downtown extends beyond the boundaries of the project area, additional research is necessary to determine the outermost boundaries of the raised area.

*D6. Significance: Theme

Engineering: Flood Control

Area Downtown Sacramento, CA

Period of Significance 1863-1876

Applicable Criteria N/A

(Discuss district’s importance in terms of its historical context as defined by theme, period of significance, and geographic scope. Also address the integrity of the district as a whole.)

National Register Criteria: The Raised Streets and Hollow Sidewalks Historic District is significant under National Register Criterion C (represents an important engineering feat in Sacramento). The District represents both an engineering feat and an early measure of flood control. Flood control projects were pursued by the federal, state, and county governments; the City of Sacramento responded the chronic flooding of the Sacramento and American rivers by raising its downtown. (continued, p. X)

DPR 523D(1/95)
The District features a street grid with streets running east-west labeled with letters, and those running north-south labeled with numbers. City blocks in Old Sacramento are divided by alleys which run from north to south; downtown, city blocks are bisected by east-west alleys. The streets are roughly graded to the same elevation, but the alleys dip between the streets. The District includes three parks: the Old Sacramento State Historic Park, which is located between Front Street and Firehouse Alley and I and J streets; the Rosa Lima Park on the northeast corner of the intersection of 7th and K streets; and the City Plaza Park or Cesar Chavez Park which is located between 9th and 10th street and I and J streets.

Character-Defining Features
The Raised Streets and Hollow Sidewalks District is comprised of two main features: the raised streets, which are visible from grade and the hollow sidewalks, which are located below grade. The raised streets are the backbone of the district; they are the most visible feature of the district and it was the construction of the raised streets that resulted in the construction of the hollow sidewalks.

Raised Streets/Alley Dips
The raised streets are visible from the alleys downtown, which were not raised, but remained at the original grade level. In Old Sacramento, the raised streets are visible from the Firehouse Alley, which runs north-south through the city blocks; downtown, the J/K Alley, which runs east-west through the city blocks most clearly dips from the raised streets to the original grade. To a lesser extent, the I/J and K/L alleys also dip from the level of the elevated streets to Sacramento’s original grade. The dip from the raised streets to the basement level of the buildings facilitated the delivery of goods and accommodated small stables and sheds. The combination of the raised streets and the new sewer system greatly improved drainage in the area. The alleys were of secondary importance; even if these lower points flooded, activity could continue on the raised streets in the city.

The raised streets, which are most visible from the alley dips, define the Raised Streets and Hollow Sidewalks Historic District; where the streets were raised, the buildings were raised, and hollow sidewalks were constructed. Therefore, the raised streets, which both define the project area boundaries and are the most visible from the street-level, are the most important feature of the District and represent its organizational system. The hollow sidewalks, their character-defining features, and the surface-level features of the streets and sidewalks are contributing features within the District.

Hollow Sidewalks: Character-Defining Features
The hollow sidewalks were comprised of six surfaces: the street retaining wall, the building wall, two end walls that partition the hollow sidewalk spaces, the ceiling, and the floor. Because of the utilitarian manner in which the sidewalks were constructed, the hollow sidewalk spaces contain few unique or distinguished characteristics; however, seven character-defining features were identified. Features include: the street retaining walls; brick piers and/or a brick wall below the building wall; thresholds, granite stairs, or other details; brick barrel vaults; end walls; water tanks; and, on the surface level, sidewalk lights, elevator doors, starred manhole covers, and/or granite curbs.

Street Retaining Walls
The street retaining walls are character-defining features because they reveal that the hollow sidewalks resulted from the raising of the streets—which was accomplished by pouring fill between retaining walls lining the street. The brick buttressed walls were typically thicker at the bottom and narrower at the top and buttresses supported the wall every four to six feet. To further strengthen the walls, some featured a slightly concave curve between each buttress.

Forty (40) hollow sidewalk segments contain brick buttressed street retaining walls. The hollow sidewalk segments at 1000 2nd Street feature street retaining walls that stand on raised, corbelled bases and the hollow sidewalk segment at 715 Merchant Street features brick street retaining walls with corbelled piers. Most frequently, however, street retaining
walls are unadorned. Over time, street retaining walls were parged with concrete or reinforced with new walls which parallel the original wall and block it’s visibility from the interior of the hollow sidewalk space. The buttressed street retaining walls at 1012 J Street have been clad with stucco and in 910 2nd Street and 127 K Street, the street brick buttressed street retaining walls have been covered or replaced.

Brick Piers and Walls below the Building

The brick system supporting the building wall also contributes to the character of the hollow sidewalk space. Buildings which were raised tend to be supported by brick piers or solid brick walls, while buildings to which stories were added retained the original first story facade at the basement level. Brick piers range from simple, rectangular or square shaped, utilitarian supports to narrow, engaged piers with corbelled bases. Some brick piers with corbelled brackets may have supported iron I-beams or wood beams spanning the hollow sidewalk space and supporting the sidewalk above. Buildings featuring the original building wall within the hollow sidewalk space typically featured door and/or window openings, including openings that may have been infilled when stories were added to the building. Window and door openings sometimes include wood or granite thresholds and/or metal covers that may have been installed to safeguard against fire.

Seven (7) hollow sidewalk segments contain brick piers which support the building wall. Most piers lack ornamentation; however, the piers in the hollow sidewalks space at 900 J Street feature piers with corbelled bases and 1131 J Street contains a brick wall with engaged-piers on corbelled bases. There hollow sidewalk segments at 1012 J Street are supported by piers with corbelled brackets. The hollow sidewalk at 831 K Street featured granite-capped brick piers.

Original Facade below the Building

Thirty-seven (37) original facades were recorded in the Raised Streets and Hollow Sidewalk District. Approximately half of these were unadorned, but eighteen (18) featured door and window openings. Some of the door and window openings, such as those at 111-113 K Street and 114 J Street, were infilled with brick. The best examples of the original building facades were located at 1000 2nd Street, 729-731 J Street, and 918 J Street, which contained clearly articulated openings with thresholds.

Ceiling Systems

Two types of structural systems were used to span between the street retaining wall and the building and support the sidewalk above: a wood post and beam system, and a brick barrel vault system. The post and beam system was supported by the street retaining wall and by framework in or paralleling the building wall. Beams spanning the hollow sidewalk space were covered with wood planks and topped with brick or cement, which was the sidewalk surface. The hollow sidewalk at 918 J Street is the only example of this structural system that was surveyed. The brick barrel vault system is comprised of shallow, arched brick vaults between iron I-beams which were spaced four to six feet apart and were supported by the street retaining walls and brick building walls or wood posts. Wood planks or cement above the vaults formed the sidewalk surface. Tie rods were located at the base of each arch to hold the sides together with tension. Only one (1) property surveyed featured the brick barrels vault system: 831 K Street. City photographs and previous surveys reveal that hollow sidewalk segments at 705 K Street and 1020 J Street also contained brick barrel vaults. Most sidewalk spaces that were surveyed featured retrofitted ceiling systems that incorporate concrete or steel I-beams as reinforcement.

End Walls

When the raised streets and sidewalks were first constructed, the hollow sidewalk segments were continuous, spanning the length of entire blocks; however, over time, the spaces were divided by partition walls or end walls that property owners constructed at the lot lines to secure the spaces from occupation or theft. End walls in the sidewalk segments surveyed were comprised of brick, concrete block, and poured concrete. Only one property, at 707 J Street,
Raised Streets & Hollow Sidewalks Historic District

<table>
<thead>
<tr>
<th>Resource Name or # (Assigned by recorder)</th>
<th>Recorded by:</th>
<th>Date</th>
<th>Integrity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raised Streets & Hollow Sidewalks</td>
<td>Meg Glynn, Page & Turnbull</td>
<td>July 2009</td>
<td>☑ Continuation</td>
</tr>
</tbody>
</table>

Water Tanks

In some of the hollow sidewalk segments, notably, those located at the corners of blocks, there were cylindrical, brick water tanks, which likely held water in case of fire. Two corner properties—1125 9th Street and 729-731 J Street—contain brick water tanks. The tanks at 1125 9th Street are parged with concrete.

Sidewalk Lights, Elevators, Starred Manhole Covers

Finally, at the street level, many hollow sidewalks contained sidewalk lights, metal elevator doors, starred manhole covers, and/or granite curbs. Sidewalk lights were comprised of glass block prisms, which, although opaque in appearance on the surface, angled into the hollow sidewalk space below. The prism lights in Sacramento’s hollow sidewalks were manufactured in Chicago, Illinois. Good examples of sidewalk lights are located in the hollow sidewalk segments at 927-931 J Street, 801 K Street, and 1015 7th Street. Metal elevator doors, installed flush in the surface of the sidewalk, allowed access to the hollow sidewalk space from the street level so that goods could be easily transferred into the building’s basement. The property at 1000 J Street retains its elevator and access doors. It is not known when the manhole covers were installed in the sidewalks, but they appear to be steel and adorned with a distinctive starred design. They were likely installed as an early measure to access the water and sewer systems. Starred manhole covers are present at 910 J Street, 801 K Street, 1030 J Street, and 923 7th Street. Some hollow sidewalk segments feature granite curbing. Granite curbs most frequently appear at the junctions of alleys and streets. It is likely that the granite curbs were installed when the streets were raised. It is also likely that the granite was transported from Folsom via the Sacramento Valley Railroad because granite from Folsom was utilized in the construction of the State Capitol building in Sacramento as well. Granite curbs were noted at the southeast corners of 9th and J streets and 7th and J streets. They were also recorded to either side of the J/K Alley at its intersection with 10th Street. Finally, the hollow sidewalk segment at 725 J Street features granite stairs leading from the street into the hollow sidewalk space.

Integrity

The character-defining features of each hollow sidewalk segment were noted and the integrity of the segment was ranked. The hollow sidewalk segments are significant as products of the City of Sacramento’s effort to raise the streets between 1863 and 1879; therefore, California Historical Resources Status Codes (CHRS Code) were assigned to each segment based on its level of integrity, or ability to convey that significance. Only those segments with the Highest or Above Average integrity levels were assigned status codes of 5D3, indicating that the resource appears to be a contributor to a district that appears eligible for local listing or designation through survey evaluation. Hollow sidewalk segments identified with Average or Low Integrity were assigned status CHRS status codes of 6Z: they were found ineligible for the National Register, California Register, or for local designation through survey evaluation.

Contributing Features

The level of Highest Integrity was assigned to the seven (7) hollow sidewalk segments that best convey how the streets, buildings and sidewalks were raised. These segments are typically supported by brick, buttressed retaining walls and brick building walls and contain an exceptional level of detail in the brick building wall, including door and window openings and lintels and thresholds.

One sidewalk segment retained the brick barrel vaulted ceiling system. The segments might also feature street level features, such as sidewalk lights, elevators, starred manhole covers, and granite curbs.
A ranking of Above Average Integrity was assigned to the seventeen (17) hollow sidewalk segments that retain enough character-defining features to convey that the streets, buildings, and sidewalks were raised. These segments generally retain the brick, buttressed street retaining wall and/or the brick building wall or piers, but these features may have been modified. Additionally, hollow sidewalk segments with Above Average Integrity may contain fewer or altered building wall features such as door and window openings that have been infilled or covered with metal, fire-proofing panels. Sidewalk lights, elevator doors and manhole covers may be sealed—visible only from below or above the hollow sidewalk. The hollow sidewalk space may contain character-defining features, but the integrity of these features may be lower than those in the hollow sidewalk segments in the Highest Integrity category.

Highest Integrity

<table>
<thead>
<tr>
<th>No. of Segments</th>
<th>APN</th>
<th>Street No.</th>
<th>Street Name</th>
<th>CHRS Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0060101010100000</td>
<td>918</td>
<td>J St.</td>
<td>5D3</td>
</tr>
<tr>
<td>2</td>
<td>00600970120000</td>
<td>831</td>
<td>K St.</td>
<td>5D3</td>
</tr>
<tr>
<td>2</td>
<td>00600340080000</td>
<td>729-731</td>
<td>J St.</td>
<td>5D3</td>
</tr>
<tr>
<td>2</td>
<td>00600710200000</td>
<td>1000</td>
<td>2nd St.</td>
<td>5D3</td>
</tr>
</tbody>
</table>

Above Average Integrity

<table>
<thead>
<tr>
<th>No. of Segments</th>
<th>APN</th>
<th>Street #</th>
<th>Street Name</th>
<th>CHRS Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>00601010070000</td>
<td>910</td>
<td>J St.</td>
<td>5D3</td>
</tr>
<tr>
<td>1</td>
<td>00601010060000</td>
<td>908</td>
<td>J St.</td>
<td>5D3</td>
</tr>
<tr>
<td>2</td>
<td>00601010030000</td>
<td>900</td>
<td>J St.</td>
<td>5D3</td>
</tr>
<tr>
<td>1</td>
<td>00600940040000</td>
<td>715</td>
<td>Merchant St.</td>
<td>5D3</td>
</tr>
<tr>
<td>1</td>
<td>00600960040000</td>
<td>708</td>
<td>K St.</td>
<td>5D3</td>
</tr>
<tr>
<td>1</td>
<td>00600340140000</td>
<td>707</td>
<td>J St.</td>
<td>5D3</td>
</tr>
<tr>
<td>1</td>
<td>00600120290000</td>
<td>123</td>
<td>J St.</td>
<td>5D3</td>
</tr>
<tr>
<td>1</td>
<td>00600120310000</td>
<td>117</td>
<td>J St.</td>
<td>5D3</td>
</tr>
<tr>
<td>1</td>
<td>00600120310000</td>
<td>117</td>
<td>J St.</td>
<td>5D3</td>
</tr>
<tr>
<td>1</td>
<td>00600710560000</td>
<td>115-119</td>
<td>K St.</td>
<td>5D3</td>
</tr>
<tr>
<td>1</td>
<td>00600710330000</td>
<td>114</td>
<td>J St.</td>
<td>5D3</td>
</tr>
<tr>
<td>1</td>
<td>00600710550000</td>
<td>111-113</td>
<td>K St.</td>
<td>5D3</td>
</tr>
<tr>
<td>2</td>
<td>00600710550000</td>
<td>1028</td>
<td>2nd St.</td>
<td>5D3</td>
</tr>
<tr>
<td>1</td>
<td>00601030190000</td>
<td>1012</td>
<td>J St.</td>
<td>5D3</td>
</tr>
<tr>
<td>1</td>
<td>00600730400000</td>
<td>1009</td>
<td>2nd St.</td>
<td>5D3</td>
</tr>
</tbody>
</table>

Non-Contributing Features

Twenty-three (23) hollow sidewalk segments were assigned ratings of Average Integrity. These segments retain some character-defining features but these features do not adequately convey that the streets and buildings were raised. The segments generally retain either the brick, buttressed retaining wall or brick wall/piers below the building; the hollow sidewalk is generally supported by at least one wall that has been significantly altered or removed.
Segments of Average Integrity may retain some other character-defining features such as openings in the building wall or sidewalk lights, but these have generally been modified—infilled or covered.

Average Integrity

<table>
<thead>
<tr>
<th>No. of Segments</th>
<th>APN</th>
<th>Street #</th>
<th>Street Name</th>
<th>CHRS Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>00600970130000</td>
<td>801</td>
<td>K St.</td>
<td>6Z</td>
</tr>
<tr>
<td>1</td>
<td>00600960100000</td>
<td>730</td>
<td>K St.</td>
<td>6Z</td>
</tr>
<tr>
<td>1</td>
<td>00600960090000</td>
<td>726</td>
<td>K St.</td>
<td>6Z</td>
</tr>
<tr>
<td>2</td>
<td>00600960080000</td>
<td>724</td>
<td>K St.</td>
<td>6Z</td>
</tr>
<tr>
<td>2</td>
<td>00600320120000</td>
<td>629</td>
<td>J St.</td>
<td>6Z</td>
</tr>
<tr>
<td>1</td>
<td>00600710270000</td>
<td>128</td>
<td>J St.</td>
<td>6Z</td>
</tr>
<tr>
<td>2</td>
<td>00601020160000</td>
<td>1125</td>
<td>9th St.</td>
<td>6Z</td>
</tr>
<tr>
<td>2</td>
<td>00600720480000</td>
<td>116</td>
<td>K St.</td>
<td>6Z</td>
</tr>
<tr>
<td>2</td>
<td>00600720250000</td>
<td>1121</td>
<td>Front St.</td>
<td>6Z</td>
</tr>
<tr>
<td>1</td>
<td>00600730450000</td>
<td>1023</td>
<td>2nd St.</td>
<td>6Z</td>
</tr>
<tr>
<td>2</td>
<td>00600710350000</td>
<td>1013</td>
<td>Front St.</td>
<td>6Z</td>
</tr>
<tr>
<td>1</td>
<td>00601030110000</td>
<td>1011-1013</td>
<td>K St.</td>
<td>6Z</td>
</tr>
<tr>
<td>2</td>
<td>00600910010000</td>
<td>1007</td>
<td>6th St.</td>
<td>6Z</td>
</tr>
<tr>
<td>2</td>
<td>00600720320000</td>
<td>126</td>
<td>K St.</td>
<td>6Z</td>
</tr>
<tr>
<td>1</td>
<td>00601110030000</td>
<td>1208</td>
<td>J St.</td>
<td>6Z</td>
</tr>
<tr>
<td>1</td>
<td>00600470090000</td>
<td>924</td>
<td>12th St.</td>
<td>6Z</td>
</tr>
<tr>
<td>1</td>
<td>00600730470000</td>
<td>1021</td>
<td>2nd St.</td>
<td>6Z</td>
</tr>
<tr>
<td>1</td>
<td>00601010150000</td>
<td>1016-1020</td>
<td>10th St.</td>
<td>6Z</td>
</tr>
<tr>
<td>2</td>
<td>00600940010000</td>
<td>1015</td>
<td>7th St.</td>
<td>6Z</td>
</tr>
<tr>
<td>1</td>
<td>00601110020000</td>
<td>1005</td>
<td>12th St.</td>
<td>6Z</td>
</tr>
</tbody>
</table>

Thirteen (13) hollow sidewalk segments were assigned a level of Low Integrity and do not retain enough character-defining features to convey that the streets and buildings were raised. The building wall/piers in these segments has in many cases been completely removed and the brick buttressed street retaining wall has been removed or covered. The segments remain hollow but all character-defining features may be absent. In many cases, the hollow sidewalk segment has been finished with plaster or outfitted as an extension of the building’s basement level.

Low Integrity

<table>
<thead>
<tr>
<th>No. of Segments</th>
<th>APN</th>
<th>Street #</th>
<th>Street Name</th>
<th>CHRS Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>00600120210000</td>
<td>910</td>
<td>2nd St.</td>
<td>6Z</td>
</tr>
<tr>
<td>1</td>
<td>00600340100000</td>
<td>725</td>
<td>J St.</td>
<td>6Z</td>
</tr>
<tr>
<td>1</td>
<td>00600960070000</td>
<td>718</td>
<td>K St.</td>
<td>6Z</td>
</tr>
<tr>
<td>2</td>
<td>00600960030000</td>
<td>704</td>
<td>K St.</td>
<td>6Z</td>
</tr>
<tr>
<td>1</td>
<td>00600720320000</td>
<td>126</td>
<td>K St.</td>
<td>6Z</td>
</tr>
<tr>
<td>1</td>
<td>00601110030000</td>
<td>1208</td>
<td>J St.</td>
<td>6Z</td>
</tr>
<tr>
<td>1</td>
<td>00600470090000</td>
<td>924</td>
<td>12th St.</td>
<td>6Z</td>
</tr>
<tr>
<td>1</td>
<td>00600730470000</td>
<td>1021</td>
<td>2nd St.</td>
<td>6Z</td>
</tr>
<tr>
<td>1</td>
<td>00601010150000</td>
<td>1016-1020</td>
<td>10th St.</td>
<td>6Z</td>
</tr>
<tr>
<td>2</td>
<td>00600940010000</td>
<td>1015</td>
<td>7th St.</td>
<td>6Z</td>
</tr>
<tr>
<td>1</td>
<td>00601110020000</td>
<td>1005</td>
<td>12th St.</td>
<td>6Z</td>
</tr>
</tbody>
</table>
The integrity levels of each hollow sidewalk segment are identified in the following map.
D6. Significance (continued)
The raised streets and hollow sidewalks in Sacramento represent the City's response to chronic flooding of the downtown. This effort is particularly significant in the context of the flood control measures that the federal and state governments took contemporaneously. The U.S. Army Corps of Engineers re-directed the American River and removed mining debris to increase its flow and both the state and county governments pursued the construction of levy systems, while the city government pursued the raised streets project downtown. The project reflects the political culture of the mid-19th century and also demonstrates why Sacramento was selected as the State Capital and the terminus of the transcontinental railroad: the city was particularly attractive to investors because it was willing to accommodate them. Rather than lose its bid as the State Capital or risk losing the railroad, Sacramento aggressively pursued the raised streets project to lessen flooding in the downtown and to improve the city’s drainage and infrastructure system. Politics in the City of Sacramento reflect its willingness to accommodate entrepreneurship.

Sacramento is not the first or only city to raise its streets. Chicago, which began to raise its streets in 1856, may have been the first to improve its infrastructure on the same scale. The raised streets program in Chicago is most similar to Sacramento’s project: streets were raised using dirt fill from the river, buildings were raised to meet the new grade, and hollow sidewalks were constructed between the streets and buildings.
In Seattle, the effort to raise the streets and sidewalks was spurred by chronic flooding, as it was in Sacramento. The Seattle Fire of 1879 served as the catalyst for the project. Unlike the infrastructure projects in Chicago and Sacramento, however, buildings constructed below the grade of the raised streets resulted when overzealous builders constructed structures immediately after the fire, before the raised street project was completed. Like Sacramento, the federal and state governments simultaneously pursued flood control efforts in Seattle, including damming of the Duwamish River and filling parts of the bay. The resulting streetscapes in Chicago, Sacramento, and Seattle are very similar.

The period of significance for the Raised Streets and Hollow Sidewalks Historic District is from 1863-1879 and covers the period when the streets and buildings were raised and the hollow sidewalks were constructed. Raising the streets was one very specific flood control measure in a series of programs and projects pursued to prevent chronic flooding of the Sacramento Valley. The program was not expanded over time to other parts of the City, nor were the streets and sidewalks universally reinforced or updated at another time; thus the date range of its original implementation best represents its period of significance.

THE ESTABLISHMENT OF SACRAMENTO

John Sutter established the town of New Helvetia, the first permanent Euro-American settlement in the Sacramento Valley near the banks of the American River in 1839. Sutter constructed Sutter’s Fort between 1842 and 1844 on a high point above the confluence of the American and Sacramento rivers. Sutter owned more than 150,000 acres in the Central Valley. He ran a menagerie of enterprises, employing blacksmiths, carpenters, tanners, gunsmiths, vaqueros, farmers, gardeners, weavers, hunters, sawyers, sheep-herders, trappers, and later flour millwrights and a distiller.

Sutter began establishing the city of Sutterville on a bluff adjacent the Sacramento River but John Marshall’s discovery of gold at Sutter’s sawmill in Coloma in 1848, disrupted his plans. An international Gold Rush ensued and overnight, the embarcadero at the confluence of the Sacramento and American rivers transformed into a major port where speculators disembarked on their way to mines north of the area. The port became known as Sacramento and despite seasonal flooding, the town’s proximity to the river caused it to quickly surpass Sutter’s Fort and Sutter’s planned community at Sutterville in population.

Sacramento grew dramatically and some buildings were erected in the course of a single week. Merchants changed their locations monthly to best position themselves to sell their merchandise to the arriving speculators. Business sold a variety of goods including tools, hardware, machinery, raw materials, clothing, and food. Stables, feed stores, leather stores, and blacksmiths were also located on major thoroughfares, like J Street, which led east in the direction of the gold mines. Whole wagon trains bound for the gold fields to the north were outfitted from stores along J Street.

At John Sutter Jr.’s request, Captain William H. Warner and his assistant, Lt. William Tecumseh Sherman, surveyed the City of Sacramento and laid a street grid in 1848. Streets running north-south were labeled with numbers, while those running east-west were labeled with letters. An alley running east-west bisected each city block, which contained a total of eight 80’ by 160’ lots. The exception to this pattern was a strip of larger blocks between 12th and 13th Streets, which held ten 80’ by 160’ lots. The terrain increased in elevation as it moved west, away from the river, but the land was somewhat bowl-shaped, with the area between I and L streets lower than that to the north and south. With a street grid platted and development of the town in full swing, the California State Legislature officially recognized Sacramento’s City Charter in 1850.

J Street served as a major thoroughfare leading from the Sacramento River to 12th Street, where routes branched north and east to the gold mines beyond the city. From the intersection of 12th and J streets, wagons either continued east to Hangtown (Placerville) and Coloma, or turned north toward Auburn and Marysville. Because J and K streets were the most heavily trafficked, businesses were first constructed on the city blocks lining these streets.
Samuel Hensley and Pierson B. Reading constructed the first frame building in Sacramento at the intersection of Front and I streets. Shortly thereafter, merchant Samuel Brannan erected a frame store at Front and J streets. By 1850, the port of Sacramento was receiving two passenger ships a day. In 1852, Sacramento had a population of approximately 12,000. In response to devastating fires in 1849 and 1852, the City passed an ordinance in 1855 which mandated the construction of brick buildings in the business district. By 1856, the city had approximately 500 brick and 2,000 frame buildings. Sanborn maps from 1895 show that buildings in the business district generally ranged from one to three stories in height.

Incentive to Raise the Streets: the State Capitol and the Railroad
Sacramento’s early economy was fueled by capital investment and the city’s initial industry relied upon commerce. To ensure the security of their investments, businessmen encouraged the establishment of local government. Congress approved the Treaty of Guadalupe Hidalgo in 1848, which ended the Mexican-American war and made California a territory of the United States. Subsequently, in 1850, California was admitted as a free state to the Union. The Gold Rush had necessitated a stable government in Sacramento before that time, however, and in 1849, merchants created a simple government for Sacramento County which consisted of a sheriff and an alcalde (mayor). In August of that year, a territory-wide election was held to determine the members of Sacramento’s first city council and elect the city’s first mayor, Hardin Bigelow.

Sacramento served as the temporary State Capital in 1852, but it was in 1854 that the Senator Amos Parnall Catlin introduced a bill to permanently locate the State Capital in Sacramento. At the time, Sacramento had a new courthouse and offered the block bounded by I and J streets and 9th and 10th streets for the construction of a new state capitol building. Sacramento was attractive to legislators because of its lodging and transportation amenities—the city featured fifty-five hotels, plank roads, fourteen stages, and twenty-eight river steamers in 1854. Although the cities of San Francisco, Oakland, and San Jose competed to serve as the capital, and the floods of 1861-1862 delayed construction in Sacramento, work on the capitol building designed by Miner Frederick Butler began in June of 1863. The capitol would stand on state land bounded by L and N streets and 10th and 12th streets.

Shortly after the City of Sacramento became the state capital, the Sacramento Valley Railroad, one of the first railroads west of the Mississippi, opened in February 1856. The rail line ran twenty-two miles from the Sacramento Valley Railroad depot in Sacramento to Folsom, operating freight and passenger trains. The trains were instrumental in the transport of people and goods from Sacramento to Folsom, where stages and wagons provided transportation to the mines further north. In 1861, Sacramento merchants and entrepreneurs Leland Stanford, Charles Crocker, Collis Huntington, and Mark Hopkins incorporated the Central Pacific Railroad. The first transcontinental railroad, the Central Pacific broke ground in Sacramento on January 8th, 1893.

The History of Flooding in Sacramento
Established at the confluence of the American and Sacramento rivers, the City of Sacramento was close to transportation and commerce on the river, but was also subject to natural and man-made flooding. The Sacramento Valley flooded each winter and spring due to the combination of rain and melted snow pack from the Cascade Mountain Range and Sierra Nevadas. Hydraulic mining along the river north of Sacramento eroded hillsides and deposited debris in the river which disrupted its natural flow and contributed to the frequency and severity of its flooding.

Shortly after Sacramento became a City, efforts were taken to protect it from flooding. Under Mayor Hardin Bigelow, the City of Sacramento and citizens jointly constructed Sacramento’s first levee. The levee paralleled Front Street and the Sacramento River on the west and paralleled the American River on the north from Sacramento to Brighton. When this levee failed in the flood of March 1852, larger levees were constructed, including one south of the city on R Street.
At this time, the U.S. Army Corps of Engineers began to study the flooding of the Sacramento and American rivers. The 1824 *Gibbons v. Ogden* U.S. Supreme Court case ruled that because the federal government had the power to regulate commerce, it also had a responsibility to maintain the navigability of the country’s waterways to ensure that they remained unobstructed for the operation of domestic and foreign commerce. The U.S. Army Corps of Engineers’ navigational studies and monitoring of the Sacramento River in 1855 fulfilled this federal obligation.

Despite these initial efforts at flood control, when the rivers rose in 1861-1862, the city flooded again. This time, the city was under water for three months because the levees prevented it from draining.

RAISING SACRAMENTO’S STREETS

In 1853, the Mayor and Common Council first discussed the possibility of leveling and raising the city streets by approximately four feet in areas of lower elevation to prevent flooding. Although there were mixed reactions to the plan, the process began that year. I, J, K, and L streets were raised. J, K, and L streets were raised from Front Street on the west to 9th Street on the east. I Street was similarly graded from Front Street on the west to 6th Street on the east. Redwood crosswalks were constructed between Front and 8th streets. It was an expensive process, but the City wished to maintain its status as the state capital and continue attracting development.

The winter of 1861-1862 brought the most destructive floods ever experienced in the City of Sacramento and spurred the federal, state, county and city governments to develop flood control measures in the Sacramento Valley. The U.S. Army Corps of Engineers undertook a project between 1864 and 1868 to redirect the American River and dredge it of mining debris. By straightening a curve in the American River and joining the American and Sacramento rivers approximately one mile above their original juncture, the Corps increased the flow of the river and decreased its likelihood of flooding. Dirt from the re-routing of the American River was used as fill for the City’s raised streets. Although unsuccessful, the California State Legislature attempted to coordinate levee building at the state and local levels at this time.

The County, which served as the governing body for both the City and County between 1858 and 1862 wanted to raise the levees around the city in response to the continued flooding, but the city wanted to raise the grade of the streets downtown. In 1863, The Board of Supervisors passed the Hite Ordinance, [#151], named after the Supervisor that introduced it, which superseded previous ordinances and established a standard to elevate streets by eight to fourteen feet. Shortly thereafter, the County and City governments split into separate governing entities.

Between 1864 and 1868, the City of Sacramento raised the streets of its downtown by as much as fourteen feet to prevent flood waters from entering the low-lying downtown. Property owners were required to raise or add a story to their buildings in order meet the new level of the streets. In addition, property owners were responsible for building sidewalks that would bridge the gap between their buildings and the raised streets. Raising the streets increased downtown property values by fifty to sixty percent, because the public gained confidence in the security and prosperity of the downtown.

In 1864, the Board of Trustees authorized proposals to fill Front Street south of I Street to high grade. Since this work occurred adjacent to the railroad tracks, the Central Pacific may have encouraged property owners along Front Street to request high grading since it widened the track area and provide extra room for railroad operations. It was the re-grading of Front Street that served as a catalyst for downtown owners to elevate the rest of the city to the high grade level specified in the City’s ordinance. The City’s new elevation was to be level with the top of a hill where City Plaza (Cesar Chavez Park) was located.

To contain the dirt fill, each property owner constructed a retaining wall along the edge of the street in front of his
To strengthen the retaining wall and keep it from collapsing toward the building, brick bulwarks or buttresses, thicker at the bottom and tapering toward the top, were installed against the wall at intervals ranging from four to six feet. Many of the brick walls themselves also angled slightly toward the street to add additional strength.

Although most builders of the bulwarks and street retaining walls were private contractors who responded to requests for bids published by the City, local prisoners were an additional source of labor. The Street Commissioner was the designated Superintendent of the chain gangs and had the authority to order sentenced prisoners to work on streets, alleys, and other places as directed. The number of contractors who submitted bids to construct the street retaining walls increased from two in 1864 to ten in 1865, and there was strong demand for more bricklayers and laborers.

As the streets were raised, sewers and water lines were also installed. Lines, made of brick or wood, were three to five feet in diameter and were egg-shaped. Some corner properties contained brick, cylindrical cistern-like structures underground that may have served as water reservoirs in case of fire.

FLOOD CONTROL AFTER THE RAISED STREETS PROJECT
By the time that the City had completed its project of raising the streets downtown, Governor William Irwin had created the Office of the State Engineer to investigate irrigation, drainage, and navigation of the state's rivers. In 1880, State Engineer William Hammond Hall created the first integrated, comprehensive flood control plan for the Sacramento Valley which consisted of a system of levees, weirs, and bypass channels to protect urban centers. The flood control plan was largely prompted by a flood of the Sacramento Valley in 1878, but did not gain federal financial authorization until 1917 when Congress authorized the Sacramento Flood Control System.

CONDITION OF THE RAISED STREETS AND HOLLOW SIDEWALKS
In the 1970s, many of the raised streets and hollow sidewalks were demolished. Interstate 5 was constructed between 2nd and 3rd streets, bisecting Sacramento’s downtown and obliterating the existing street grid, including the associated sidewalk segments. In 1971, the Hahn Company developed a shopping mall along the K-Street corridor. Purchased by Westfield in 1998, the Westfield Downtown Plaza is roughly bound by 3rd Street on the west, J Street on the north, 7th Street on the east, and L Street on the south. Here the hollow sidewalks were also demolished for the construction of the mall.

In response a report written by Barrish, Aldrich and Schroeter structural engineers in 1982 in which the poor condition of the raised streets and hollow sidewalks was reported, the City required property owners to strengthen the most severely deteriorated hollow sidewalk structural systems. Repairs often necessitated the replacement of the original structural system. Many original brick barrel vaults were removed or covered at this time and sidewalk elevators and sidewalk lights were filled.

OTHER “RAISED” CITIES
Although unusual, Sacramento is not the first or only city to raise its streets in response to chronic flooding. In addition to those cities highlighted below, streets were raised on a smaller scale in: East St. Louis, Illinois; Ellinwood, Kansas; Leavenworth, Kansas; and Eureka Springs, Arizona.

Chicago, Illinois (1856)
In mid-19th-Century Chicago, drainage was so poor that the streets remained muddy and transportation across the city was dangerous and time consuming. In 1852, a drainage commission was formed to improve the City’s infrastructure. An engineer from Boston, Ellis S. Chesbrough solicited to head Chicago’s new Board of Sewerage Commissioners and design an underground sewer system. Between 1855 and 1856, the city council adopted resolutions to raise
the grade of the city streets by four to fourteen feet to ensure proper drainage. Over the next twenty years, the streets were re-graded with mud and sand from the Chicago River bed and buildings were raised with jacks to meet the new street level. The City of Chicago was in charge of raising the streets and constructing hollow sidewalks to meet the new grade level; however, as in the City of Sacramento, individual property owners were responsible for raising their buildings to meet the streets and sidewalks. Not all buildings were raised—some remain below grade level—but larger buildings, particularly ones of brick construction, were raised with jacks. George M. Pullman, who later produced the Pullman sleeping car, initially made his name raising buildings in Chicago. In 2001, nearly 2,000 hollow sidewalk segments remained in Chicago; however, the City has an Emergency Vaulted Sidewalk program to fill severely deteriorated hollow sidewalk segments.

Seattle, Washington (1890)
Located in western Washington on hilly land between Puget Sound and Lake Washington, the Seattle area was established in the 1850s. Although located on a natural harbor, which would become a principal port, the City was prone to seasonal flooding from melting snow pack in the Cascade Mountains. Shoreline development was also threatened by tidal flows which could cause Lake Washington to overflow. To combat flooding, the Duwamish River was straightened and channelized and tributaries were diverted. The U.S. Army Corps of Engineers constructed the Hiram Chittenden Locks in 1917 to facilitate boat navigation and to control the water levels of Lake Union and Lake Washington, the water level of which was subsequently lowered ten to twenty feet. Additionally, the Seattle General Construction Company filled the tidal lands with 24 million cubic yards of silt from the surrounding hills.

A movement began in 1876 to raise the streets of Seattle to protect it from flooding, but it did not occur on a large scale until the Seattle Fire of 1889. On June 6, 1889, fire destroyed 64 acres of Seattle’s central business district. As devastating as the fire was, it presented residents with the opportunity to undertake extensive infrastructure improvements including widened and re-graded streets, reconstructed wharves, and municipal water works. The City also mandated new construction to be of brick or steel. It was at this time that the streets in Seattle were raised by ten to thirty-two feet. The Seattle General Construction Company constructed street retaining walls of quarry stone or logs on either side of the roads and filled them with silt from the surrounding hills.

After the Seattle Fire of 1889, the city laid down reconstruction rules for the area but did not specify that new construction be built at the new grade level. Aggressive owners began to build at the original grade and within two weeks after the fire 138 buildings were under construction or completed, but sat partially below the new street level. Wooden sidewalks spanned from the raised streets to the second or even third floors of the buildings. Within two years of the fire, 3,500 buildings had been constructed in Seattle, many designed by architects. By 1897, this Pioneer Square area of the city had become a hub of great hotels, restaurants, and stores – the business, and commercial center of the Pacific Northwest.

Conclusions and Recommendations
Based on information in the Historic Context Statement and the themes previously discussed, The Raised Streets and Hollow Sidewalks Historic District appears to be eligible for listing as a local historic district. The raised streets project reflects the political culture of the mid-19th century and also demonstrates why Sacramento was selected as the State Capital and the terminus of the transcontinental railroad: the city was particularly attractive to investors because it was willing to accommodate them. Rather than lose its bid as the State Capital or risk losing the railroad, Sacramento aggressively pursued the raised streets project to lessen flooding in the downtown and to improve the city's drainage and infrastructure system.

Additional research is recommended to determine the historic boundaries of the raised streets and hollow sidewalks. Architectural survey of the remaining hollow sidewalk segments that were not accessed during this survey is also advised.
References

Sacramento Bee, March 9, 1863; Jan. 20, 1868; January 28, 1868; February 15, 1868; March 14, 1868; March 18, 1868; April 15, 1868; June 30, 1868.

Sacramento Board of Trustees, Minutes Books, Microfilm Reel #1, 1849-1920, Sacramento Archive & Museum Collection Center.

Sacramento City Clerk, Minutes, Contracts-Sidewalks, Petitions-Streets, 1864-1878, Sacramento Archive & Museum Collection Center.

Sacramento City Directories, 1851-1873.

RECOMMENDATIONS

The Raised Streets and Hollow Sidewalks Historic District should be listed as a local historic district in the City of Sacramento. As a local district, the City would be able to establish policies to encourage the preservation and interpretation of this urban cultural landscape. Ideally, the City could also establish financial incentives to encourage property owners to rehabilitate and maintain the hollow sidewalk segments. Although the raised streets do not appear to be threatened, many the hollow sidewalk segments have been filled because of development.

It is recommended that DPR 523 B Forms (Building, Structure, Object Records) be produced for those hollow sidewalk segments exhibiting the highest levels of integrity. These hollow sidewalk segments tend to retain their integrity because they are underutilized. It may be possible for the City to form agreements with the property owner’s of such segments that would allow public access to the spaces as part of the historic district interpretive program in exchange for funding to rehabilitate individual hollow sidewalk segments.
BIBLIOGRAPHY

Sacramento Bee, March 9, 1863; Jan. 20, 1868; January 28, 1868; February 15, 1868; March 14, 1868; March 18, 1868; April 15, 1868; June 30, 1868.

Sacramento City Clerk, Minutes, Contracts-Sidewalks, Petitions-Streets, 1864-1878, Sacramento Archive & Museum Collection Center.

Sacramento City Directories, 1851-1873.

Unpublished Manuscripts:

Boghosian, Paula, and Donald L. Cox, *Downtown Alley Districts*, December 2006.

“Flood History/Overview,” Sacramento Area Flood Control Agency. Available:
http://www.safca.org/floodrisk/index.html

Labelscar: The Retail History Blog. Available: http://www.labelscar.com/california/westfield-
downtown-plaza (Accessed 07/10/2009)

Underground Atlanta, http://www.underground-atlanta.com/about-us/history-of-
APPENDIX

MAPS
The following maps were prepared by Page & Turnbull:
- Project Area
- Previous Surveys
- Surveyed Parcels
- Raised Streets & Sidewalk Integrity
- Raised Streets & Year Built

Map of downtown Sacramento showing extent of Hollow Sidewalks. In presentation prepared by Brandon Spencer-Hartle.
Raised Streets & Hollow Sidewalks
Sacramento, California

RAISED STREETS & SIDEWALK INTEGRITY MAP
Page & Turnbull, Inc.
July 20, 2009

- Raised Streets (highest elevation)
- Raised Streets (lowest elevation)
- Raised Streets (demolished)

- Highest Integrity (9)
- Above Average Integrity (19)
- Average Integrity (22)
- Low Integrity (16)
- Not Evaluated

SACRAMENTO RIVER

COMMERCIAL ALLEY

CEC

FRONT ST

I ST

FRONT ST

K ST

LIBRARY LANE

J ST/J ST ALLEY

J ST/K ST ALLEY

K ST/L ST ALLEY

L ST

MERCHANT STREET

MERCHANDISE ALLEY

SACRAMENTO RIVER

COMMONWEALTH ALLEY

FIRST ST

SECOND ST

THIRD ST

FOURTH ST

FIFTH ST

SIXTH ST

SEVENTH ST

EIGHTH ST

NINTH ST

TENTH ST

ELEVENTH ST

TWELFTH ST

THIRTEENTH ST

FIFTH ST

FOURTH ST

THIRD ST

SECOND ST

FIRST ST

I-5 FWY

J ST

K ST

L ST
Sacramento, California

Raised Streets & Hollow Sidewalks

RAISED STREETS MAP (YEAR BUILT)

Page & Turnbull, Inc.
July 20, 2009

Outlined areas show demolished streets

Data based on information from Historic Environmental Consultants (HEC)

1864
1865
1866
1868
1869-70
1871-76

Sacramento River

Commonwealth Alley

In front of the map, there are color-coded lines indicating different years of construction or demolition. The map shows streets and alleys with their respective years of construction.
Survey Report

Raised Streets & Hollow Sidewalks
Sacramento, California

20 July 2009

Prepared for
City of Sacramento
Sacramento, CA

Prepared by
PAGE & TURNBULL, INC.
2401 C Street, Ste. B, Sacramento, California 95816
916.930.9903 / www.page-turnbull.com
TABLE OF CONTENTS

INTRODUCTION

- PROJECT OBJECTIVES ... 1
- PROJECT AREA .. 1
- PROJECT TEAM ... 2
- ACKNOWLEDGEMENTS ... 2

RESEARCH DESIGN

- METHODOLOGY .. 3
- ACCESS TO RESOURCES ... 3
- EXCEL SPREADSHEET AND GIS MAPPING 5
- DISTRICT FORM .. 5

HISTORIC CONTEXT STATEMENT

- THE ESTABLISHMENT OF SACRAMENTO 7
- RAISING SACRAMENTO’S STREETS ... 11
- FLOOD CONTROL AFTER THE RAISED STREETS PROJECT 15
- CHARACTER-DEFINING FEATURES ... 16
- CONDITION OF THE RAISED STREETS AND HOLLOW SIDEWALKS 21
- OTHER “RAISED” CITIES ... 22
- SIGNIFICANCE ... 24

ARCHITECTURAL SURVEY (A FORMS)

- ... 25

DISTRICT EVALUATION (D FORM)

- ... 115

RECOMMENDATIONS

- ... 130

BIBLIOGRAPHY

- ... 131

APPENDIX

- MAPS .. 134
INTRODUCTION

PROJECT OBJECTIVES

The City of Sacramento received a Certified Local Government (CLG) grant from the State Office of Historic Preservation to survey and evaluate the raised streets and hollow sidewalks in downtown Sacramento. Several products were created to evaluate the eligibility of a potential historic district, including: this survey report; a historic context statement; an architectural survey with California Department of Parks and Recreation (DPR) 523 A form documentation; a spreadsheet listing character-defining features; GIS maps; and a District Record (DPR 523 D form). The Capital City Preservation Trust, a local not-for-profit organization, provided matching grant funding for the project.

While the raised streets and hollow sidewalks have generated a lot of interest in the City of Sacramento, the resources have not been comprehensively studied and evaluated as a potential historic district. This project evaluates the significance of the raised streets and hollow sidewalks within a broader historic context, identifies character-defining features of the resources and evaluates the integrity of the features. The survey report concludes with recommendations for next steps.

PROJECT AREA

The raised streets are the framework for the Raised Streets and Hollow Sidewalks Historic District. The District boundary represents the area in which the raised streets are visible and the hollow sidewalk segments remain. The District is bounded by Front Street on the west, I Street on the north, 13th Street on the east, and L Street on the south.
The boundary of the Raised Streets and Hollow Sidewalks Survey was based upon the map entitled, "Hollow Sidewalk Evaluation Study," which was produced by structural engineer David Okaskai as part of the 1982 structural engineering report prepared by Barrish, Aldrich and Schroeter in which remaining raised streets and hollow sidewalks were studied. Researchers have created maps to depict which streets were raised between 1863 and 1876, but the boundaries are conflicting; the maps appear in the appendix of this report for reference. According to the 1982 Barrish, Aldrich and Schroeter report, 151 hollow sidewalk segments remained in Sacramento in 1982. Page & Turnbull’s architectural survey of the Raised Streets and Hollow Sidewalks was based on the boundary of that report. Verifying the extent of the raised area downtown was not included in the scope of this project. While it is likely that the raised downtown extends beyond the boundaries of the project area, additional research is necessary to determine the outermost boundaries of the raised area.

PROJECT TEAM
The Raised Streets and Hollow Sidewalks project was lead by Page & Turnbull. Ruth Todd, AICP, LEED, AP served as Principal-in-Charge, and Meg Glynn served as Project Manager. Gretchen Hilyard acted as database and GIS coordinator and Rebecca Fogel acted as mapping and graphics specialist. Kortny McCarter, a volunteer from California State University, Sacramento, assisted with the survey.

Paula Boghosian, from Historic Environment Consultants, prepared the historic context statement with assistance from associate, Don Cox.

ACKNOWLEDGEMENTS
Page & Turnbull would like to acknowledge the following individuals for their management and assistance with the Raised Streets and Hollow Sidewalks project:

Roberta Deering, City of Sacramento, Preservation Director
Kathleen Forrest, City of Sacramento, Project Manager
Josh Cannon, City of Sacramento, GIS Specialist, Development Services Department
Marie Nelson, Office of Historic Preservation
Fred Turner, Capital City Preservation Trust
RESEARCH DESIGN

METHODOLOGY
The goal of the project was to document the raised streets and hollow sidewalks and to evaluate the eligibility of a potential historic district. To make this evaluation, the following products were prepared:

- Historic Context Statement
- Primary Record Forms (DPR 523 A Forms)
- Excel Spreadsheet listing Character-Defining Features
- Geographical Information Systems Maps (GIS Maps)
- District Record Form (DPR 523 D Form)
- Survey Report

Historic Context Statement
Paula Boghosian of Historic Environmental Consultants prepared the Historic Context Statement. The purpose of the statement was to identify the broad themes and patterns associated with the raised streets and hollow sidewalks. It primarily addresses why and how Sacramento’s downtown was raised and is based on records obtained from the Sacramento Archives and Museum Collection (SAAMC) and the Sacramento Room at the Sacramento Public Library. The historic context statement is included in this survey report.

Architectural Survey
Page & Turnbull led an architectural survey of the raised streets and hollow sidewalks within the identified project area. Although the resources surveyed were located below grade, the resources were comprised of buildings and street retaining walls, therefore they were addressed as architectural and engineering features rather than archaeological. The entire project area represents an area that has the potential to yield archeological information, but no disturbances or excavations were made during this survey. Page & Turnbull allocated a portion of the project fee to retain a qualified archaeologist in the event that archeological resources were encountered during the survey.

ACCESS TO RESOURCES
The Raised Streets and Hollow Sidewalks project area represents an urban cultural landscape because the City of Sacramento re-shaped the land to make the downtown habitable and more attractive to businesses. The raised streets and hollow sidewalks represent a cultural landscape; the raised streets are visible at grade and the hollow sidewalks are subterranean features. While it was possible to walk the expanse of the raised streets and note the character-defining features of the sidewalk surfaces and streetscape, not all of the remaining hollow sidewalk spaces were accessible.

The City of Sacramento was responsible for obtaining access to the hollow sidewalk segments for survey purposes. Letters with information regarding the raised streets and hollow sidewalks survey project were distributed to property owners within the project area in February of 2009. The City then contacted property owners via telephone to request access to the hollow sidewalk spaces accessible through their buildings. The City contacted and made appointments with forty (40) property owners. Through door-knocking, Page & Turnbull was able to access another nineteen (19) hollow sidewalk segments.

The hollow sidewalk spaces are accessible through the basements of adjacent buildings or through manholes in the sidewalks above. For the purpose of this reconnaissance architectural survey, the hollow sidewalks were only accessed through the basements of buildings in the project area; City of
San Francisco planning staff provided photographs for the two hollow sidewalk segments located at Rosa Lima Park at the intersection of 7th and K streets, which were taken from Manhole 8. The City also provided photographs for the property at 700 K Street, which was not accessible for survey. Information for the two segments at 700 K Street was included in the database based on the photographs. Additionally, information for two hollow sidewalk segments at 1030 J Street and one segment at 1020 J Street were included in the database based on photographs taken by Historic Environmental Consultants for the Cathedral Square, Cultural Resources Supplementary Report, ADEIR. DPR 523 A Forms were prepared only for those resources accessed and surveyed by Page & Turnbull.

Survey Strategy

Based on previous newspaper articles and studies, preliminary character-defining features were identified for survey of the raised streets and hollow sidewalks project area. These features were organized in a table or checklist format. The table included columns for up to two hollow sidewalk segments so that the features of each space could be separately noted. For example, in the case where a corner property had two hollow sidewalk segments, both survey columns were completed. The table streamlined the survey process and is recommended for use by future surveyors.

At the street level, character-defining features included alleys which dipped from their intersection with streets to the original grade level; granite curbs; starred manhole covers; and sidewalk prism lights. Below grade, all six surfaces of the hollow sidewalk segments were surveyed: the street retaining walls; the structural system below the building (building wall); the ceiling; the flooring; and the end walls partitioning each end of the space. Character-defining features below grade included brick, barrel vault ceilings; brick, buttressed street retaining walls; and brick walls/ piers below buildings. Penetrations in the ceiling such as sidewalk prism lights, elevator doors, and manholes were also noted.

The survey form identified the potential character-defining features by abbreviation. The abbreviations used follow:

<table>
<thead>
<tr>
<th>Abbreviations</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRK_PIERS</td>
<td>Building wall is supported by brick piers</td>
</tr>
<tr>
<td>BRK_WALL</td>
<td>Building wall is supported by brick wall</td>
</tr>
<tr>
<td>WALL_DOOR</td>
<td>Building wall contains door openings</td>
</tr>
<tr>
<td>WALL_WIN</td>
<td>Building wall contains window openings</td>
</tr>
<tr>
<td>CEIL_BRK_VAL</td>
<td>Sidewalk segment features a brick, vaulted ceiling</td>
</tr>
<tr>
<td>CEIL_CONC</td>
<td>Sidewalk segment features a concrete ceiling</td>
</tr>
<tr>
<td>RET_BUTTRSS</td>
<td>Street retaining wall is buttressed</td>
</tr>
<tr>
<td>FL_CONCRT</td>
<td>Concrete floor</td>
</tr>
<tr>
<td>FL_DIRT</td>
<td>Dirt floor</td>
</tr>
<tr>
<td>FL_OTHR</td>
<td>Other flooring present</td>
</tr>
<tr>
<td>SEG_END_WALL</td>
<td>Hollow sidewalk segment has end walls</td>
</tr>
<tr>
<td>SEG_END_OTHR</td>
<td>Hollow sidewalk segment is otherwise blocked at its ends</td>
</tr>
<tr>
<td>SEG_DIV</td>
<td>Hollow sidewalk segment is divided or partitioned</td>
</tr>
<tr>
<td>SDWLK_LGHTS</td>
<td>Sidewalk surface features prism sidewalk lights</td>
</tr>
<tr>
<td>SDWLK_ELEV</td>
<td>Sidewalk surface features an elevator door</td>
</tr>
<tr>
<td>SDWLK_GR_CURB</td>
<td>Sidewalk surface features granite curbs</td>
</tr>
<tr>
<td>STAR_MH</td>
<td>Sidewalk surface features a starred manhole cover</td>
</tr>
<tr>
<td>ALY_DIP</td>
<td>Alley dips to original grade level alongside building</td>
</tr>
</tbody>
</table>
The abbreviated features noted on the survey forms were transferred directly into the Raised Streets and Hollow Sidewalks Excel Spreadsheet. The information in the spreadsheet was sorted to determine the number of properties in which each type of character-defining feature remains.

EXCEL SPREADSHEET AND GIS MAPPING
The City of Sacramento requested that the data collected in the Raised Streets and Hollow Sidewalks project be integrated into the City’s existing GIS program. Josh Cannon, from the Department of Development Services, created a layer in GIS to represent the hollow sidewalk segments in downtown Sacramento. Because corner parcels featured two hollow sidewalks segments, the sidewalks were linked to the database through FID numbers, unique file identification numbers assigned to the parcels, rather than associated parcel numbers (APNs). The character-defining features noted on the survey forms were then input into the Excel spreadsheet. The data from the spreadsheet was linked to GIS to create the maps. Additional columns were added to the database to indicate whether the data resulted from Page & Turnbull’s survey, City photographs, or previous studies. The database displays whether a hollow sidewalk segment is hollow or filled; whether it has been surveyed and by whom; whether a DPR 523 A Form was prepared; what character-defining features were present; and what level of integrity remains. The Excel spreadsheet may easily be integrated into the City’s GIS program to inform Planning, Public Works, and other departments. A CD containing the Excel spreadsheet is enclosed with this report.

DISTRICT FORM
Formed by the City of Sacramento in response to chronic flooding, the raised streets and hollow sidewalks represent a cultural landscape: the land was intentionally shaped by raising the streets and constructing the hollow sidewalks to make it habitable. The Raised Streets and Hollow Sidewalks Historic District was, therefore, approached as a cultural landscape. The identified character-defining features describe the built landscape. According to the National Park Service, a cultural landscape is defined as, “a geographic area, associated with a historic event, activity, or person or exhibiting other cultural aesthetic values.” The National Park Service further defines a historic district as an area that “possesses a significant concentration, linkage, or continuity of sites, buildings, structures, or objects united historically or aesthetically by plan or physical development.” According to National Park Service definitions, the property’s combined character as a cultural landscape and historic district should not be separated when considering the property’s historical significance and potential for listing in the National Register of Historic Places.

Based on information in the Historic Context Statement and the identified broad themes and patterns, The Raised Streets and Hollow Sidewalks Historic District appears to be eligible for listing as a local historic district under Criterion C for architectural and engineering significance. The raised streets project reflects the political culture of the mid-19th century and also demonstrates why Sacramento was selected as the State Capital and the terminus of the transcontinental railroad: the city was particularly attractive to investors because it was willing to accommodate them. Rather than lose its bid as the State Capital or risk losing the railroad, Sacramento aggressively pursued the raised streets project to lessen flooding in the downtown and to improve the city’s drainage and infrastructure system. Additional research is recommended to determine the historic boundaries of the raised streets and hollow sidewalks. Architectural survey of the remaining hollow sidewalk segments that were not accessed during this survey is also advised.

Evaluation of the Raised Streets and Hollow Sidewalks for archeological discoveries was not part of the scope; therefore, National Register Criterion D or the potential to yield archeological data was not analyzed as part of District evaluation conducted by Page & Turnbull. The Raised Streets and Hollow Sidewalks Historic District is located in one of the oldest portions of Sacramento, however,
and the entire project area qualifies as an area with the potential to yield archeological data. A report prepared by Tremaine & Associates, Inc. for the Sacramento Regional Transit District includes some archeological records for resources located within a portion of the Raised Streets and Hollow Sidewalks Historic District. Tremaine determined that the Raised Streets and Hollow Sidewalks Historic District was significant under Criterion D because it has potential to yield information “important to Sacramento’s prehistory and goldrush era camp life.”
HISTORIC CONTEXT STATEMENT

THE ESTABLISHMENT OF SACRAMENTO

John Sutter established the town of New Helvetia, the first permanent Euro-American settlement in the Sacramento Valley near the banks of the American River in 1839. Sutter constructed Sutter’s Fort between 1842 and 1844 on a high point above the confluence of the American and Sacramento rivers. Sutter owned more than 150,000 acres in the Central Valley. He ran a menagerie of enterprises, employing blacksmiths, carpenters, tanners, gunsmiths, vaqueros, farmers, gardeners, weavers, hunters, sawyers, sheep-herders, trappers, and later flour millwrights and a distiller. Sutter began establishing the city of Sutterville on a bluff adjacent the Sacramento River but John Marshall’s discovery of gold at Sutter's sawmill in Coloma in 1848, disrupted his plans. An international Gold Rush ensued and overnight, the embarcadero at the confluence of the Sacramento and American rivers transformed into a major port where speculators disembarked on their way to mines north of the area. The port became known as Sacramento and despite seasonal flooding, the town’s proximity to the river caused it to quickly surpass Sutter's Fort and Sutter’s planned community at Sutterville in population.

Sacramento grew dramatically and some buildings were erected in the course of a single week. Merchants changed their locations monthly to best position themselves to sell their merchandise to the arriving speculators. Business sold a variety of goods including tools, hardware, machinery, raw materials, clothing, and food. Stables, feed stores, leather stores, and blacksmiths were also located on major thoroughfares, like J Street, which led east in the direction of the gold mines. Whole wagon trains bound for the gold fields to the north were outfitted from stores along J Street.

At John Sutter Jr.’s request, Captain William H. Warner and his assistant, Lt. William Tecumseh Sherman, surveyed the City of Sacramento and laid a street grid in 1848. Streets running north-south were labeled with numbers, while those running east-west were labeled with letters. An alley running east-west bisected each city block, which contained a total of eight 80’ by 160’ lots. The exception to this pattern was a strip of larger blocks between 12th and 13th Streets, which held ten 80’ by 160’ lots. The terrain increased in elevation as it moved west, away from the river, but the land was somewhat bowl-shaped, with the area between I and L streets lower than that to the north and south. With a street grid platted and development of the town in full swing, the California State Legislature officially recognized Sacramento’s City Charter in 1850.

J Street served as a major thoroughfare leading from the Sacramento River to 12th Street, where routes branched north and east to the gold mines beyond the city. From the intersection of 12th and J streets, wagons either continued east to Hangtown (Placerville) and Coloma, or turned north toward Auburn and Marysville. Because J and K streets were the most heavily trafficked, businesses were first constructed on the city blocks lining these streets. Samuel Hensley and Pierson B. Reading constructed the first frame building in Sacramento at the intersection of Front and I streets. Shortly thereafter, merchant Samuel Brannan erected a frame store at Front and J streets. By 1850, the port of Sacramento was receiving two passenger ships a day. In 1852, Sacramento had a population of approximately 12,000. In response to devastating fires in 1849 and 1852, the City passed an ordinance in 1855 which mandated the construction of brick buildings in the business district. By 1856, the city had approximately 500 brick and 2,000 frame buildings. Sanborn maps from 1895 show that buildings in the business district generally ranged from one to three stories in height.
Incentive to Raise the Streets: The State Capitol and the Railroad
Sacramento’s early economy was fueled by capital investment and the city’s initial industry relied upon commerce. To ensure the security of their investments, businessmen encouraged the establishment of local government. Congress approved the Treaty of Guadalupe Hidalgo in 1848, which ended the Mexican-American war and made California a territory of the United States. Subsequently, in 1850, California was admitted as a free state to the Union. The Gold Rush had necessitated a stable government in Sacramento before that time, however, and in 1849, merchants created a simple government for Sacramento County which consisted of a sheriff and an alcalde (mayor). In August of that year, a territory-wide election was held to determine the members of Sacramento’s first city council and elect the city’s first mayor, Hardin Bigelow.

Sacramento served as the temporary State Capital in 1852, but it was in 1854 that the Senator Amos Parnall Catlin introduced a bill to permanently locate the State Capital in Sacramento. At the time, Sacramento had a new courthouse and offered the block bounded by I and J streets and 9th and 10th streets for the construction of a new state capitol building. Sacramento was attractive to legislators because of its lodging and transportation amenities—the city featured fifty-five hotels, plank roads, fourteen stages, and twenty-eight river steamers in 1854. Although the cities of San Francisco, Oakland, and San Jose competed to serve as the capital, and the floods of 1861-1862 delayed construction in Sacramento, work on the capitol building designed by Miner Frederick Butler began.
in June of 1863. The capitol would stand on state land bounded by L and N streets and 10th and 12th streets.

Shortly after the City of Sacramento became the state capital, the Sacramento Valley Railroad, one of the first railroads west of the Mississippi, opened in February 1856. The rail line ran twenty-two miles from the Sacramento Valley Railroad depot in Sacramento to Folsom, operating freight and passenger trains. The trains were instrumental in the transport of people and goods from Sacramento to Folsom, where stages and wagons provided transportation to the mines further north. In 1861, Sacramento merchants and entrepreneurs Leland Standford, Charles Crocker, Collis Huntington, and Mark Hopkins incorporated the Central Pacific Railroad. The first transcontinental railroad, the Central Pacific broke ground in Sacramento on January 8th, 1893.

The History of Flooding in Sacramento
Established at the confluence of the American and Sacramento rivers, the City of Sacramento was close to transportation and commerce on the river, but was also subject to natural and man-made flooding. The Sacramento Valley flooded each winter and spring due to the combination of rain and melted snow pack from the Cascade Mountain Range and Sierra Nevadas. Hydraulic mining along the river north of Sacramento eroded hillsides and deposited debris in the river which disrupted its natural flow and contributed to the frequency and severity of its flooding.

![Image of Sacramento City in 1850](image-url)
"View of Sacramento City as it appeared during the great inundation in January 1850."
Courtesy Library of Congress.

Shortly after Sacramento became a City, efforts were taken to protect it from flooding. Under Mayor Hardin Bigelow, the City of Sacramento and citizens jointly constructed Sacramento’s first levee. The levee paralleled Front Street and the Sacramento River on the west and paralleled the American River on the north from Sacramento to Brighton. When this levee failed in the flood of March 1852, larger levees were constructed, including one south of the city on R Street.
At this time, the U.S. Army Corps of Engineers began to study the flooding of the Sacramento and American rivers. The 1824 Gibbons v. Ogden U.S. Supreme Court case ruled that because the federal government had the power to regulate commerce, it also had a responsibility to maintain the navigability of the country’s waterways to ensure that they remained unobstructed for the operation of domestic and foreign commerce. The U.S. Army Corps of Engineers’ navigational studies and monitoring of the Sacramento River in 1855 fulfilled this federal obligation.

Despite these initial efforts at flood control, when the rivers rose in 1861-1862, the city flooded again. This time, the city was under water for three months because the levees prevented it from draining.

“Inundation of the State Capitol, City of Sacramento, 1862.” View of J Street (top) and K Street (bottom).
Lithograph originally published in San Francisco by A. Rosenfield.
Courtesy California State Library.
RAISING SACRAMENTO’S STREETS

In 1853, the Mayor and Common Council first discussed the possibility of leveling and raising the city streets by approximately four feet in areas of lower elevation to prevent flooding. Although there were mixed reactions to the plan, the process began that year. I, J, K, and L streets were raised. J, K, and L streets were raised from Front Street on the west to 9th Street on the east. I Street was similarly graded from Front Street on the west to 6th Street on the east. Redwood crosswalks were constructed between Front and 8th streets. It was an expensive process, but the City wished to maintain its status as the state capital and continue attracting development.

The winter of 1861-1862 brought the most destructive floods ever experienced in the City of Sacramento and spurred the federal, state, county and city governments to develop flood control measures in the Sacramento Valley. The U.S. Army Corps of Engineers undertook a project between 1864 and 1868 to redirect the American River and dredge it of mining debris. By straightening a curve in the American River and joining the American and Sacramento rivers approximately one mile above their original juncture, the Corps increased the flow of the river and decreased its likelihood of flooding. Dirt from the re-routing of the American River was used as fill for the City’s raised streets. Although unsuccessful, the California State Legislature attempted to coordinate levee building at the state and local levels at this time.

The County, which served as the governing body for both the City and County between 1858 and 1862 wanted to raise the levees around the city in response to the continued flooding, but the city wanted to raise the grade of the streets downtown. In 1863, The Board of Supervisors passed the Hite Ordinance, [#151], named after the Supervisor that introduced it, which superseded previous ordinances and established a standard to elevate streets by eight to fourteen feet. Shortly thereafter, the County and City governments split into separate governing entities.

Between 1864 and 1868, the City of Sacramento raised the streets of its downtown by as much as fourteen feet to prevent flood waters from entering the low-lying downtown. Property owners were required to raise or add a story to their buildings in order meet the new level of the streets. In addition, property owners were responsible for building sidewalks that would bridge the gap between their buildings and the raised streets. Raising the streets increased downtown property values by fifty

Maps depicting the American River channel in its original location (left) and after it was re-routed in 1868 by the U.S. Army Corps of Engineers (right).
In presentation prepared by Brandon Spencer-Hartle.
to sixty percent, because the public gained confidence in the security and prosperity of the
downtown.

The Process of Raising the Streets

The City Board of Trustees developed the following process for the street improvements and used it
with later high grading activities:

1) The Board of Trustees gave ten days public notice prior to raising the grade of a street.
2) A majority of property owners on the block had to approve the Board’s petition to raise the
street.
3) A majority of property owners could also initiate a petition to raise the street on their block.
4) The City Surveyor estimated the amount of material needed to grade each block.
5) The Street Commissioner advertised for bids to fill the street. The lowest bid was usually
chosen and the contractor was paid from a ‘street fund’ created from the assessment of each
owner’s street frontage.
6) If a majority of owners of a block opposed raising the street, it would not be raised.
7) If the owner did not pay his assessment in time, a lien would be placed on the property.

In 1864, the Board of Trustees authorized proposals to fill Front Street south of I Street to high
grade. Since this work occurred adjacent to the railroad tracks, the Central Pacific may have
encouraged property owners along Front Street to request high grading since it widened the track
area and provide extra room for railroad operations. It was the re-grading of Front Street that served
as a catalyst for downtown owners to elevate the rest of the city to the high grade level specified in
the City’s ordinance. The City’s new elevation was to be level with the top of a hill where City Plaza
(Cesar Chavez Park) was located.

To contain the dirt fill, each property owner constructed a retaining wall along the edge of the street
in front of his property. To strengthen the retaining wall and keep it from collapsing toward the
building, brick bulwarks or buttresses, thicker at the bottom and tapering toward the top, were
installed against the wall at intervals ranging from four to six feet. Many of the brick walls themselves
also angled slightly toward the street to add additional strength.

Although most builders of the bulwarks and street retaining walls were private contractors who
responded to requests for bids published by the City, local prisoners were an additional source of
labor. The Street Commissioner was the designated Superintendent of the chain gangs and had the
authority to order sentenced prisoners to work on streets, alleys, and other places as directed. The
number of contractors who submitted bids to construct the street retaining walls increased from two
in 1864 to ten in 1865, and there was strong demand for more bricklayers and laborers.

As the streets were raised, sewers and water lines were also installed. Lines, made of brick or wood,
were three to five feet in diameter and were egg-shaped. Some corner properties contained brick,
cylindrical cistern-like structures underground that may have served as water reservoirs in case of fire.

Chronology of the Raised Streets

Property owners raised the streets on their blocks and constructed sidewalks as they were financially
able; therefore, sidewalk segments on a single block may be at the original grade or elevated. Stairs,
ladders and ramps were constructed between raised sidewalks and those which remained at the
original grade, creating a particularly hazardous streetscape, as one visitor describes in the Overland
Monthly:
“This work has entailed an immense outlay on the city... Various isolated buildings near these streets have lifted themselves up, and have a piece of pavement several feet higher than other people's. Everybody here in Sacramento builds his pavement on a different level from that of his neighbor, if possible, and does not always drive down his nails well.”

The following is a chronological list of dates when various sections of streets were raised:

1864
The first high grade work was completed. Front Street was elevated from K to I streets; J Street was raised between Front and 2nd streets; and I Street was raised from Front to 5th streets.

1865
Work was completed on: L Street between Front and 2nd streets; K Street between Front and 3rd streets; and 2nd Street from I to L streets.

1866
The following sections of street were raised: 3rd Street between K and J streets; 4th Street between I and K streets; J Street between 3rd and 4th streets; and K Street between 3rd and 4th streets.

1867
Sections of street raised included: 3rd Street between I and J streets; 5th Street between I and J streets; 6th Street between I and J streets; and J Street between 4th and 6th streets.

1868
The following streets were raised: 4th Street between K and L streets; 5th Street between K and L streets; 6th Street between J and K streets; 7th Street between J and K streets; K Street between 4th and 10th streets; and J Street between 6th and 10th streets.

1869
Work was completed on the following street sections: I Street between 5th and 10th streets; 8th between I and K streets; and 9th and 10th streets between I and J streets.

The remaining area of low elevation was raised between 1871 and 1876. A map in the Appendices depicts when the streets were raised.

Paving
After the street fill settled, which often took a year, paving was applied. Wood planks, brick and concrete block did not prove durable as a street surface, so between 1863 and 1870 the City experimented with different paving materials. The blocks between 2nd and 4th streets on J Street were paved with brick surfaced with asphaltum, but the paving material was not durable. Around 1860, J Street was paved with Russ pavement, a type of concrete block surfacing and the road in front of the Central Pacific freight depot was macadamized, or covered with crushed granite, in early 1865. It was in 1865 that the City specified the use of Nicolson pavement for the streets.

Nicolson pavement was first installed on Front and 2nd Streets late in 1865. The paving was comprised of alternate 4”x4” and 4”x8” blocks of wood which were adhered to a base of thin wood planking with tar. Sand and then gravel were poured over the surface and tamped until level. Tar was then poured over the street surface. Nicholson pavement was used widely and in 1869 a similar pavement type called Stowe Foundation was also used. While Nicolson surfaces were at first preferred, 10 years later they were replaced by cobblestones which proved to be more durable.
The need to access the sub-grade water and sewer lines affected how the streets were surfaced. Although cobblestones were dirty, noisy, and hard on the hoofs of horses, they were laid on thoroughfares such as K Street because they were inexpensive and it was easier to remove them in order to make repairs to the sewer and water lines. K Street was comprised of a foot of sand topped with six to nine inch vertically laid cobblestones. Rammed and watered, it was topped with a thin layer of gravel. By the mid-1870s, it had become standard for the cobblestone streets to be surfaced with local pit-run sand and gravel.

Raising the Buildings

Property owners were responsible for raising their buildings to meet the new street level, which could either be done by adding a story to the top of the building or raising the building to the new level. Property owners who added stories to an existing structure created a basement level which often retained the doors, windows, and firedoors of the building’s original first story. The majority of merchants, however, raised their buildings with jacks and put new foundations and storerooms underneath them to maintain the main floor of the building at street level. Most elevated buildings were brick. It required hundreds of screw jacks to raise the larger buildings downtown; each jack had to be turned a little at a time to keep the building level and balanced as it was elevated. It took 250 jack screws and dozens of men to raise the St. George Hotel which stood at the intersection of Fourth and J streets and was 160’ long by 76’ wide and weighed approximately 1,900 tons. Some building owners raised their buildings with jacks and filled the space left below with earth.
FLOOD CONTROL AFTER THE RAISED STREETS PROJECT

By the time that the City had completed its project of raising the streets downtown, Governor William Irwin had created the Office of the State Engineer to investigate irrigation, drainage, and navigation of the state’s rivers. In 1880, State Engineer William Hammond Hall created the first integrated, comprehensive flood control plan for the Sacramento Valley which consisted of a system of levees, weirs, and bypass channels to protect urban centers. The flood control plan was largely prompted by a flood of the Sacramento Valley in 1878, but did not gain federal financial authorization until 1917 when Congress authorized the Sacramento Flood Control System.

In the mid-twentieth century, federal flood control efforts were renewed when Congress passed the Flood Control Act of 1944 and construction of the Folsom Dam was authorized. The U.S. Army Corps of Engineers completed the dam in 1956. Despite the presence of the dam, record floods occurred in 1956, 1964, and 1986, so the performance rating of the Folsom dam was downgraded from a 500-year storm to a 60-year storm. The City of Sacramento, the County of Sacramento, the County of Sutter, the American River Flood Control District and Reclamation District 1000 formed the Sacramento Area Flood Control Agency (SAFCA) in 1989 to provide the Sacramento region with increased flood protection along the American and Sacramento rivers. In the early 1990s, the U.S. Army Corps of Engineers constructed Sacramento area levee improvements along the Sacramento River from Verona to Freeport. SAFCA is instrumental in the certification of environmental documentation, the construction of levee improvements to protect North Sacramento and Natomas, and improvements to the levee along the American River. In 2008, construction began on the Folsom Dam Joint Federal Project, which would allow the dam to meet the 200-year flood performance rating.
CHARACTER-DEFINING FEATURES

Raised Streets/Alley Dips
The nature of Sacramento’s raised streets is apparent from the alleys downtown, which were not raised, but remained at the original grade level. In Old Sacramento, the raised streets are visible from the Firehouse Alley, which runs north-south through the city blocks, and downtown, the J/K Alley, which runs east-west through the city blocks, most clearly dips from the raised street level to the original grade. To a lesser extent, the I/J and K/L alleys also dip from the level of the elevated streets to Sacramento’s original grade. The dip from the raised street level to the original grade along alleys facilitated the delivery of goods and accommodated small stables and sheds. The raised streets and the new sewer system improved drainage greatly. The alleys still flooded at times, but were of secondary importance; by and large, activity could continue on the raised streets in the city.

View south of Firehouse Alley between L and K streets, showing alley dips.
Page & Turnbull, 2009.

Hollow Sidewalks
The hollow sidewalks were formed by six structural elements: the street retaining wall, the building wall, two end walls (which divide and partition the hollow sidewalk spaces), the ceiling, and the floor. Because of the utilitarian manner in which the sidewalks were constructed, the hollow sidewalk segments contain few unique or distinguishing characteristics; however, seven character-defining features were identified. Features include: the street retaining walls; brick piers or a brick wall below the building; thresholds, granite stairs, or other details; brick barrel vaulted ceilings; end walls; water tanks; and, on the surface level, sidewalk lights, elevator doors, starred manhole covers, and/or granite curbs.
The street retaining walls are character-defining features because they reveal that the hollow sidewalks resulted from the raising of the streets—which was accomplished by pouring fill between street retaining walls. The brick buttressed walls were typically thicker at the bottom and narrower at the top and buttresses supported the wall every four to six feet. To further strengthen the walls, some brick walls between the buttresses were angled slightly toward the street.
The brick system supporting the building also contributes to the character of a hollow sidewalk segment. Buildings that were raised are often supported by brick piers, while buildings to which a story was added feature the former first story facade of the building at basement level. Brick piers range from simple, rectangular or square shaped, utilitarian supports to narrow, wall-like supports with corbelled bases. Some brick piers feature corbelled brackets which may have supported iron I-beams or wood beams running below the sidewalk above. Buildings supported by the original building wall typically feature door and/or window openings, including openings that may have been bricked-in when additional stories were added. These window and door openings sometimes include wood or granite thresholds and/or metal covers that may have been installed to safeguard against fire.

Two types of structural systems were used to span between the street retaining wall and the building and support the sidewalk surface above. One was a wood post and beam framework system, while the other incorporated brick barrel vaults. The post and beam system was supported by the street retaining wall and by framework in or paralleling the building wall. Beams supporting the sidewalk were then covered with wood planks and surfaced with brick or cement to create a sidewalk above. The brick barrel vault system was comprised of shallow, arched brick barrel vaults that spanned between iron I-beams, which were spaced four to six feet apart and were supported by the street retaining wall and brick building wall or wood posts along the building wall. Wood planks or cement above the vaults formed the sidewalk surface. Tie rods were located at the base of each arch to hold the sides together with tension. Newer or reconstructed hollow sidewalk systems are comprised of reinforced concrete flat slabs which rest on concrete or encased steel beams which span from the street retaining wall to the building or to free-standing columns.

When the new sidewalks were completed, the hollow sidewalk spaces below were continuous; however, over time, the spaces were partitioned into smaller segments by walls that property owners constructed at the lot lines to secure the spaces from occupation or theft.
In some of the hollow sidewalk segments, notably those located at the corners of blocks, cylindrical, brick cisterns were present and likely held water to fight fires.

Brick barrel vaults, 831 K Street.
Page & Turnbull, 2009.

Brick water tank, 729 J Street.
Page & Turnbull, 2009.
Finally, at the street level, many of the sidewalk surfaces were pierced by sidewalk lights, metal elevator doors, and manhole covers, or featured granite curbs at their edges. Sidewalk lights were comprised of glass block prisms, which, although opaque in appearance on the surface, angled light into the hollow sidewalk space below. The prism lights in Sacramento’s hollow sidewalks were manufactured in Chicago, Illinois. Metal elevator doors, installed flush with the sidewalk surface and operating like trapdoors, allowed access to the hollow sidewalk space from the street so that goods could be easily transferred to the building’s basement. It is not known when the manhole covers were installed in the sidewalks, but they appear to be made of steel and bear a distinctive starred detailing. They were likely installed as an early measure to access the water and sewer systems. Larger, modern manhole covers have since been installed as well. Lastly, some sidewalk segments feature granite curbing. Granite curbs most frequently appear at the juncture of alleys and streets. It is likely that the granite curbs were installed when the streets were raised and that the granite was transported from Folsom via the Sacramento Valley Railroad, because granite from Folsom was utilized in the construction of the State Capitol building in Sacramento.
CONDITION OF THE RAISED STREETS AND HOLLOW SIDEWALKS

The history of the hollow sidewalks was largely forgotten until 1959, when Marjorie Francisco wrote a research paper at California State College in Sacramento entitled “Raising of the Streets in the Sacramento Business District.” A second and better known research paper, entitled “Early Attempts to Save the Site of Sacramento by Raising its Business District,” was written by Barbara Lagomarsino in 1969 as her Masters thesis at the California State College in Sacramento. Francisco’s and Lagomarsino’s papers cited many of the same newspapers and City records.

In 1979, when Barbara Lagomarsino was Chair of the Sacramento Preservation Board, she conducted a short tour of sections of the underground sidewalks for members of the Board. In 1980, during the preparation of the City Survey of Non-Residential Buildings, additional underground areas were explored, and again during the demolition of buildings for new development on the current ‘Library Block, 8th - 9th, I – J Streets’.

In the 1970s, many of the raised streets and hollow sidewalks were demolished. Interstate 5 was constructed between 2nd and 3rd streets, bisecting Sacramento’s downtown and obliterating the existing street grid, including the associated sidewalk segments. In 1971, the Hahn Company developed a shopping mall along the K-Street corridor. Purchased by Westfield in 1998, the Westfield Downtown Plaza is roughly bound by 3rd Street on the west, J Street on the north, 7th Street on the east, and L Street on the south. Here the hollow sidewalks were also demolished for the construction of the mall.

Structural Analysis

In the 1980s, a number of hollow sidewalk segments remained; however, several were visibly stressed and some were experiencing minor structural failures. Sacramento structural engineers Barrish, Aldrich and Schroeter were hired to investigate the hollow sidewalks, determine their condition and develop repair schemes responsive to the various uses of the space. Their 1982 report entitled, Downtown Sacramento, “Hollow Sidewalks,” included descriptions of structural systems present in the hollow sidewalks and their condition. The report gives a brief history of the raised streets and hollow sidewalks, identifies the structural systems present in the hollow sidewalks, and describes their condition. Barrish, Aldrich and Schroeter note that while individual owners used various contractors to construct the hollow sidewalks, construction materials and methods were very similar.

“Their presence directly under the street side curb and typically consist of horizontal brick arches, two wythes (8”) thick, spanning between buttresses. The buttress spacing varies between four and eight feet. ... In some areas the arches are replaced by flat wall sections, also 8” thick brick and supported by buttresses. Floor slabs were not typically provided in the original construction but have been added in many areas. In quite a few areas, mass concrete has more recently been placed against the inside of the retaining walls to a depth of two or three feet.”

The beams supporting the sidewalks were supported by the street retaining walls and buildings walls in a few different ways. The building wall or columns were sometimes corbelled to produce a bracket or ledge on which the beams rested. Alternatively, building columns might be constructed in a T-shape which supported both the building and the sidewalk. And finally, a system comprised of cast iron brackets that projected from the brick building columns and supported a railroad tie was also used to span from the street retaining wall to the building. The cast iron brackets were especially susceptible to damage when the brick columns deteriorated.
The Barrish, Aldrich and Schroeter report describes the deteriorated state of the hollow sidewalks in 1982:

“Types and causes of brick, wrought iron and concrete deterioration are provided. The soft-fired “salmon” brick has eroded in some cases to half its original dimensions and much lime mortar has degenerated to a fluffy powder that lies in drifts along the bottom of walls beneath the joints. Some wrought iron beams have delaminated and corroded. Partial failure of the retaining walls/buttresses is visible in some areas with unevenness at the curb line and depressions in the street adjacent to the curb.”

In response to this and other structural analyses, the City required property owners to strengthen the most severely deteriorated hollow sidewalk structural systems. Repairs often necessitated the replacement of the original structural system. Many original brick barrel vaults were removed or covered at this time and sidewalk elevators and sidewalk lights were filled.

OTHER “RAISED” CITIES

Although unusual, Sacramento is not the first or only city to raise its streets in response to chronic flooding. In addition to those cities highlighted below, streets were raised on a smaller scale in: East St. Louis, Illinois; Ellinwood, Kansas; Leavenworth, Kansas; and Eureka Springs, Arizona.

Chicago, Illinois (1856)
In mid-19th-Century Chicago, drainage was so poor that the streets remained muddy and transportation across the city was dangerous and time consuming. In 1852, a drainage commission was formed to improve the City’s infrastructure. An engineer from Boston, Ellis S. Chesbrough solicited to head Chicago’s new Board of Sewerage Commissioners and design an underground sewer system. Between 1855 and 1856, the city council adopted resolutions to raise the grade of the city streets by four to fourteen feet to ensure proper drainage. Over the next twenty years, the streets were re-graded with mud and sand from the Chicago River bed and buildings were raised with jacks to meet the new street level. The City of Chicago was in charge of raising the streets and constructing hollow sidewalks to meet the new grade level; however, as in the City of Sacramento, individual property owners were responsible for raising their buildings to meet the streets and sidewalks. Not all buildings were raised—some remain below grade level—but larger buildings, particularly ones of brick construction, were raised with jacks. George M. Pullman, who later produced the Pullman sleeping car, initially made his fame raising buildings in Chicago. In 2001, nearly 2,000 hollow sidewalk segments remained in Chicago; however, the City has an Emergency Vaulted Sidewalk program to fill severely deteriorated hollow sidewalk segments.

Seattle, Washington (1890)
Located in western Washington on hilly land between Puget Sound and Lake Washington, the Seattle area was established in the 1850s. Although located on a natural harbor, which would become a principal port, the City was prone to seasonal flooding from melting snow pack in the Cascade Mountains. Shoreline development was also threatened by tidal flows which could cause Lake Washington to overflow. To combat flooding, the Duwamish River was straightened and channelized and tributaries were diverted. The U.S. Army Corps of Engineers constructed the Hiram Chittenden Locks in 1917 to facilitate boat navigation and to control the water levels of Lake Union and Lake Washington, the water level of which was subsequently lowered ten to twenty feet. Additionally, the Seattle General Construction Company filled the tidal lands with 24 million cubic yards of silt from the surrounding hills.
A movement began in 1876 to raise the streets of Seattle to protect it from flooding, but it did not occur on a large scale until the Seattle Fire of 1889. On June 6, 1889, fire destroyed 64 acres of Seattle’s central business district. As devastating as the fire was, it presented residents with the opportunity to undertake extensive infrastructure improvements including widened and re-graded streets, reconstructed wharves, and municipal water works. The City also mandated new construction to be of brick or steel. It was at this time that the streets in Seattle were raised by ten to thirty-two feet. The Seattle General Construction Company constructed street retaining walls of quarry stone or logs on either side of the roads and filled them with silt from the surrounding hills.

After the Seattle Fire of 1889, the city laid down reconstruction rules for the area but did not specify that new construction be built at the new grade level. Aggressive owners began to build at the original grade and within two weeks after the fire 138 buildings were under construction or completed, but sat partially below the new street level. Wooden sidewalks spanned from the raised streets to the second or even third floors of the buildings. Within two years of the fire, 3,500 buildings had been constructed in Seattle, many designed by architects. By 1897, this Pioneer Square area of the city had become a hub of great hotels, restaurants, and stores – the business, and commercial center of the Pacific Northwest.

Atlanta, Georgia (1920)
Atlanta’s raised streets were developed not in response to flooding, but to foster the City’s relationship with the railroad. In 1836, the state of Georgia chartered a railroad to transport its agricultural goods to markets and ports. The railroad ran 138 miles from Georgia to Chattanooga, Tennessee, and a settlement grew up around the southern terminus, which became the City of Atlanta. Georgia seceded from the Union in 1861 and the city became the supply depot for the Confederacy during the Civil War. The railroad center of the South, Atlanta was the prime target for General William T. Sherman’s Union troops. A month after Sherman’s siege began, Atlanta surrendered to Union troops. After the war, the city recovered and grew dramatically, many buildings were built and the railroad expanded its service along the eastern coast. An electric streetcar service was introduced in Atlanta in 1889. By 1900, Atlanta’s Union Station Depot served 100 trains a day and provided service to New York. By 1910, several iron bridges crossed the rail tracks at the depot. Local architect Haralson Bleckley proposed the construction of new raised concrete public plazas in lieu of the iron bridges above the railroad tracks. In the 1920s, his vision was realized when the streets were raised above the tracks to alleviate traffic problems. Buildings adjacent to the raised streets moved their operations to the second floor leaving the old fronts below for storage and other services.

In 1943, a park was built over the railroad gulch, and was replaced with a larger one in the 1960s called Peachtree Fountains Plaza. In 1968, the five block downtown area, containing original storefronts, with marble and granite archways, cast iron pilasters, decorative brickwork, and a variety of ornamental wood building forms was declared a historic site. In 1980, the area was closed due to the construction of a rapid transit line and other factors, but it was placed on the National Register by city leaders and later reopened.
SIGNIFICANCE

The raised streets and hollow sidewalks in Sacramento represent the City’s response to the chronic flooding of the downtown. This effort is particularly significant in the context of the flood control measures that the federal and state governments took simultaneously. The U.S. Army Corps of Engineers re-directed the American River and removed mining debris to increase its flow and both the state and county governments pursued the construction of levy systems, but the city government pursued the raised streets project downtown. The project reflects the political culture of the mid-19th century and also demonstrates why Sacramento was selected as the State Capital and the terminus of the transcontinental railroad: the city was particularly attractive to investors because it was willing to accommodate them. Rather than lose its bid as the State Capital or risk losing the railroad, Sacramento aggressively pursued the raised streets project to lessen flooding in the downtown and to improve the city’s drainage and infrastructure system.

The raised streets and hollow sidewalks project area represents an urban cultural landscape. The City of Sacramento raised the elevation of the downtown to make the City habitable and attractive to entrepreneurs. The raised streets serve as the framework of the cultural landscape and the resulting hollow sidewalk spaces support that framework. Through the raised streets and hollow sidewalk project, the natural landscape of downtown Sacramento was permanently altered. This engineering project conveys how early Sacramento developed.

Sacramento is not the first or only city to raise its streets. Chicago, which began to raise its streets in 1856, may have been the first to improve its infrastructure on the same scale. The raised streets program in Chicago is most similar to Sacramento’s project: streets were raised with dirt from the river, buildings were jacked up to meet the new elevation, and hollow sidewalks were constructed. The effort to raise the streets and sidewalks in Seattle, Washington, like that in Sacramento, was spurred by chronic flooding. The Seattle Fire of 1879 served as the catalyst for the project. Unlike the infrastructure projects in Chicago and Sacramento, buildings located below the grade of the raised streets resulted when overzealous builders constructed structures immediately after the fire, before the raised street project was completed. Like Sacramento, the federal and state governments simultaneously pursued flood control efforts in Seattle, including damming of the Duwamish River and filling parts of the bay. The resulting streetscape in Chicago, Sacramento, and Seattle is very similar.

The integrity of the raised streets and hollow sidewalks has been compromised by development. The Barrish, Aldrich and Schroeter structural survey in 1982 revealed that raised streets with hollow sidewalks remained in an area bound by Front Street on the west, I Street on the north, 13th Street on the east, and L Street on the south. Interstate 5 bisects the project area and the raised streets and hollow sidewalks were demolished when the Downtown Mall was constructed in 1971. The site of the Downtown Mall is roughly bounded by 3rd Street on the west, J Street on the north, 7th Street on the east, and L Street on the south. The raised streets remain visible from the alleys, which dip to the original grade level west of I-5 in Old Sacramento and east of I-5, downtown; however, the integrity of many of the remaining hollow sidewalks has been compromised.
ARCHITECTURAL SURVEY (A FORMS)

<table>
<thead>
<tr>
<th>APN</th>
<th>ADDRESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>00600120210000</td>
<td>910 2ND ST</td>
</tr>
<tr>
<td>00600710220000</td>
<td>1000 2ND ST</td>
</tr>
<tr>
<td>00600730400000</td>
<td>1009 2ND ST</td>
</tr>
<tr>
<td>00600730470000</td>
<td>1021 2ND ST</td>
</tr>
<tr>
<td>00600730450000</td>
<td>1023 2ND ST</td>
</tr>
<tr>
<td>00600710550000</td>
<td>1028 2ND ST</td>
</tr>
<tr>
<td>00600901001000</td>
<td>1007 6TH ST</td>
</tr>
<tr>
<td>00600940010000</td>
<td>1015 7TH ST</td>
</tr>
<tr>
<td>00601020201000</td>
<td>1125 9TH ST</td>
</tr>
<tr>
<td>00601010150000</td>
<td>1016-1020 10TH ST</td>
</tr>
<tr>
<td>00600470090000</td>
<td>924 12TH ST</td>
</tr>
<tr>
<td>00601110020000</td>
<td>1005 12TH ST</td>
</tr>
<tr>
<td>00600710350000</td>
<td>1013 FRONT ST</td>
</tr>
<tr>
<td>00600720250000</td>
<td>1121 FRONT ST</td>
</tr>
<tr>
<td>00600710330000</td>
<td>114 J ST</td>
</tr>
<tr>
<td>00600120310000</td>
<td>117 J ST</td>
</tr>
<tr>
<td>00600710450000</td>
<td>122 J ST</td>
</tr>
<tr>
<td>00600120290000</td>
<td>123 J ST</td>
</tr>
<tr>
<td>00600710270000</td>
<td>128 J ST</td>
</tr>
<tr>
<td>00600320120000</td>
<td>629 J ST</td>
</tr>
<tr>
<td>00600340140000</td>
<td>707 J ST</td>
</tr>
<tr>
<td>00600940040000</td>
<td>712 J ST</td>
</tr>
<tr>
<td>00600340100000</td>
<td>725 J ST</td>
</tr>
<tr>
<td>00600340080000</td>
<td>729-731 J ST</td>
</tr>
<tr>
<td>00601010030000</td>
<td>900 J ST</td>
</tr>
<tr>
<td>00601010060000</td>
<td>908 J ST</td>
</tr>
<tr>
<td>00601010070000</td>
<td>910 J ST</td>
</tr>
<tr>
<td>00601010100000</td>
<td>918 J ST</td>
</tr>
<tr>
<td>00601030020000</td>
<td>1000 J ST</td>
</tr>
<tr>
<td>00601030190000</td>
<td>1012 J ST</td>
</tr>
<tr>
<td>00601110030000</td>
<td>1208 J ST</td>
</tr>
<tr>
<td>00600710560000</td>
<td>111-113 K ST</td>
</tr>
<tr>
<td>00600710560000</td>
<td>115-119 K ST</td>
</tr>
<tr>
<td>00600720480000</td>
<td>116 K ST</td>
</tr>
<tr>
<td>00600720320000</td>
<td>126 K ST</td>
</tr>
<tr>
<td>00600960030000</td>
<td>704 K ST</td>
</tr>
<tr>
<td>00600960040000</td>
<td>708 K ST</td>
</tr>
<tr>
<td>00600960070000</td>
<td>718 K ST</td>
</tr>
<tr>
<td>00600960080000</td>
<td>724 K ST</td>
</tr>
<tr>
<td>00600960090000</td>
<td>726 K ST</td>
</tr>
<tr>
<td>00600960100000</td>
<td>730 K ST</td>
</tr>
<tr>
<td>00600970130000</td>
<td>801 K ST</td>
</tr>
<tr>
<td>00600970120000</td>
<td>831 K ST</td>
</tr>
<tr>
<td>00601030110000</td>
<td>1011-1013 K ST</td>
</tr>
</tbody>
</table>

--- RAISED STREETS
*P2. Location: [] Not for Publication [✓] Unrestricted *a. County: Sacramento
and (P2b and P2c or P2d. Attach a Location Map as necessary.)
 *b. USGS 7.5’ Quad: Sacramento West Date: 1998
 *c. Address: 910 2nd Street, Sacramento City: Sacramento Zip: 95814
 d. UTM: Zone: ___________________________ mE/__________________ mN (G.P.S.)
 e. Other Locational Data: Assessor’s Parcel Number (Map, Block, Lot): 00600120210000

*P3a. Description: (Describe resource and its major elements. Include design, materials, condition, alterations, size, setting, and boundaries.)
The building at 910 2nd Street is located on the west side of 2nd Street, between J and I streets, and contains one hollow sidewalk segment. The 910 2nd Street hollow sidewalk segment currently houses restrooms, a storage area, and an office. The hollow sidewalk segment parallels 2nd Street and features brick building walls that support the 910 2nd Street building on the west and drywall finished street retaining walls on the east. The brick building walls feature door openings reinforced by steel straps under the lintels. The hollow sidewalk segment is enclosed on its north and south ends by drywall finished walls. The hollow sidewalk segment features linoleum tile flooring and a ceiling finished with concrete plaster.

*P3b. Resource Attributes: (list attributes and codes) HP39. Other

*P4. Resources Present: [] Building [✓] Structure [] Object [] Site [] District [] Element of District [] Other

*P5b. Photo: (view and date)
Looking east at the hollow sidewalk segment
04/2009

*P6. Date Constructed/Age and Sources: [✓] Historic
1865
HEC, 2009.

*P7. Owner and Address:
William H Markley
Revocable Trust et al
2807 Sheridan Way
Sacramento, CA 95821

*P8. Recorded by:
Page & Turnbull, Inc. (MEG)
2401 C Street, Ste. B
Sacramento, CA 95816

*P9. Date Recorded:
05/27/2009

*P10. Survey Type:
Reconnaissance

*P11. Report Citation: (Cite survey report and other sources, or enter “none”)
Raised Streets and Hollow Sidewalks Survey Report

*Attachments: [] None [] Location Map [] Sketch Map [✓] Continuation Sheet [] Building, Structure, and Object Record
[] Archaeological Record [] District Record [] Linear Feature Record [] Milling Station Record [] Rock Art Record
[] Artifact Record [] Photograph Record [] Other (list)
DPR 523A (1/95)

*Required information
Looking west at the brick building walls supporting the 910 2nd Street building (Page & Turnbull, 04/2009)

Hollow sidewalk segment, looking northeast (Page & Turnbull, 04/2009)
P1. Other Identifier:

Resource name(s) or number (assigned by recorder): 1000 2nd Street, Hollow Sidewalk

P2. Location:

- **a.** County: Sacramento
- **b.** USGS 7.5’ Quad: Sacramento West
- **c.** Address: 1000 2nd Street, Sacramento
- **d.** UTM: Zone: mE/ mN (G.P.S.)
- **e.** Other Locational Data: Assessor’s Parcel Number (Map, Block, Lot): 00600710220000

P3a. Description:

The building at 1000 2nd Street is located on the southwest corner of the intersection of 2nd and J streets and contains two segments of hollow sidewalks. The 1000 2nd Street hollow sidewalk segments are not currently utilized. The northern hollow sidewalk segment parallels J Street and features brick walls that support the 1000 2nd Street building on the south and butressed brick street retaining walls on the north. This hollow sidewalk segment is enclosed by a brick wall at its west end. The eastern hollow sidewalk segment parallels 2nd Street. Brick and poured concrete walls support the 1000 2nd Street building on the west side of the sidewalk and a buttressed brick street retaining wall with a corbelled base supports the sidewalk on the east. The west wall that supports the building features an arched doorway and rectangular door and window openings. The south end of the segment terminates in a brick wall. Both hollow sidewalk segments feature dirt flooring and a concrete slab ceiling.

P3b. Resource Attributes:

(list attributes and codes) HP39. Other

P4. Resources Present:

- Building
- Structure
- Object
- Site
- District
- Element of District

P5b. Photo:

Eastern hollow sidewalk segment, looking north

02/2009

P6. Date Constructed/Age and Sources:

- Historic

1865

HEC, 2009.

P7. Owner and Address:

- State of California
- P.O. Box 69331
- San Francisco, CA

P8. Recorded by:

- Page & Turnbull, Inc. (MEG)
- 2401 C Street, Ste. B
- Sacramento, CA 95816

P9. Date Recorded:

05/27/2009

P10. Survey Type:

- Reconnaissance

P11. Report Citation:

(Cite survey report and other sources, or enter “none”) Raised Streets and Hollow Sidewalks Survey Report

Attachments:

- None
- Location Map
- Sketch Map
- Continuation Sheet
- Building, Structure, and Object Record
- Archaeological Record
- District Record
- Linear Feature Record
- Milling Station Record
- Rock Art Record
- Artifact Record
- Photograph Record
- Other (list)

DPR 523A (1/95)
West side of brick building wall supporting 1002 2nd Street (Page & Turnbull, 03/2009)

Northeast corner where two hollow sidewalk segments meet (Page & Turnbull, 03/2009)
1009 2nd Street, Hollow Sidewalk

Resource Attributes:
- HP39. Other

Date Constructed/Age and Sources:
- 1865
- Historic
- HEC, 2009.

Owner and Address:
- Nissim Lanyadoo
- P.O. Box 470277
- San Francisco, CA

Recorded by:
- Page & Turnbull, Inc. (MEG)
- 2401 C Street, Ste. B
- Sacramento, CA 95816

Date Recorded:
- 05/25/2009

Survey Type:
- Reconnaissance

The building at 1009 2nd Street is located on the west side of 2nd Street and contains one hollow sidewalk segment. The 1009 2nd Street hollow sidewalk segment parallels 2nd Street and is not currently utilized. Concrete piers and a brick wall support the 1009 2nd Street building on the east, with a brick, buttressed street retaining wall on the east. There are door openings in the eastern brick wall, including an arched opening that has been infilled with concrete block. The hollow sidewalk segment contains a bathroom at its south end and the segment terminates in concrete block end walls on the north and south. The hollow sidewalk segment features concrete flooring and a concrete slab ceiling.
Concrete block end wall (at left) and brick building wall (at right), looking northeast (Page & Turnbull, 04/2009)

From inside the basement of 1009 2nd Street, looking at the hollow sidewalk segment, looking northwest (Page & Turnbull, 04/2009)
P2. Location:
- **a. County:** Sacramento
- **b. USGS 7.5’ Quad:** Sacramento West
- **c. Address:** 1021 2nd Street, Sacramento
- **d. UTM: Zone:**
- **e. Other Locational Data: Assessor’s Parcel Number (Map, Block, Lot):** 00600730470000

P3a. Description:
The building at 1021 2nd Street is located on the east side of 2nd Street, between J and K streets, and features one hollow sidewalk segment. The 1021 2nd Street hollow sidewalk segment parallels 2nd Street and currently houses a maintenance office and storage area. A concrete block wall supports the 1021 K Street building on the west, with a poured concrete street retaining wall on the east. A steel frame partition wall clad in drywall divides the segment into two rooms. The hollow sidewalk segment terminates in concrete block end walls on the north and south. The hollow sidewalk segment features concrete flooring and a concrete slab ceiling. Poured concrete columns, located at regular intervals down the length of the space, support the ceiling.

P3b. Resource Attributes: (list attributes and codes)
HP39. Other

P4. Resources Present:
- Building
- Structure
- Object
- Site
- District
- Element of District
- Other

P5b. Photo: (view and date)
Hollow sidewalk segment, looking east
02/2009

P6. Date Constructed/Age and Sources:
- **Historic:** 1865
- HEC, 2009.

P7. Owner and Address:
- David R Meeker & Entezari A Hosseini
- 815 27th Street
- Sacramento, CA 95816

P8. Recorded by:
- Page & Turnbull, Inc. (MEG)
- 2401 C Street, Ste. B
- Sacramento, CA 95816

P9. Date Recorded:
05/25/2009

P10. Survey Type:
Reconnaissance

P11. Report Citation: (Cite survey report and other sources, or enter “none”)
Raised Streets and Hollow Sidewalks Survey Report

Attachments:
- None
- Location Map
- Sketch Map
- Continuation Sheet
- Building, Structure, and Object Record
- Archaeological Record
- District Record
- Linear Feature Record
- Milling Station Record
- Rock Art Record
- Artifact Record
- Photograph Record
- Other (list)

DPR 523A (L/95)
*Required information
<table>
<thead>
<tr>
<th>Resource Name or # (Assigned by recorder)</th>
<th>1021 2nd Street, Hollow Sidewalk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recorded by:</td>
<td>Page & Turnbull</td>
</tr>
<tr>
<td>Date</td>
<td>05/25/2009</td>
</tr>
<tr>
<td></td>
<td>Continuation</td>
</tr>
</tbody>
</table>

Poured concrete street retaining wall, looking west (Page & Turnbull, 02/2009)

Looking north at the concrete block end wall (Page & Turnbull, 02/2009)
Resource name(s) or number (assigned by recorder): 1023 2nd Street, Hollow Sidewalk

Location: Not for Publication Unrestricted

County: Sacramento

Address: 1023 2nd Street, Sacramento

City: Sacramento **Zip**: 95814

UTM: Zone: mE/ mN (G.P.S.)

Owner and Address: David R Meeker & Entezari A Hossein

Address: 815 27th Street

City: Sacramento **Zip**: 95816

Date Constructed/Age and Sources: Historic

Date: 1865

Historic Engineering Center (HEC): 2009

Date Recorded: 05/25/2009

Survey Type: Reconnaissance

Report Citation: Raised Streets and Hollow Sidewalks Survey Report

Survey Type: Reconnaissance

Resource Attributes: (list attributes and codes)

Description: The building at 1023 2nd Street is located on the east side of 2nd Street, between K and J streets, and contains one hollow sidewalk segment. The 1023 2nd Street hollow sidewalk segment parallels 2nd Street and currently functions as a storage area. Concrete columns support the 1023 K Street building on the east, and a brick buttressed street retaining wall supports the sidewalk on the west. The north and south end walls of the hollow sidewalk segment were not visible. The hollow sidewalk segment features a concrete floor and a concrete slab ceiling.
<table>
<thead>
<tr>
<th>*Resource Name or # (Assigned by recorder)</th>
<th>1023 2nd Street, Hollow Sidewalk</th>
</tr>
</thead>
<tbody>
<tr>
<td>*Recorded by:</td>
<td>Page & Turnbull</td>
</tr>
<tr>
<td>*Date</td>
<td>05/25/2009</td>
</tr>
<tr>
<td>Continuation</td>
<td></td>
</tr>
</tbody>
</table>

Poured concrete floor and concrete column (Page & Turnbull, 04/2009)

Wood plank sidewalk surface above hollow sidewalk segment, looking east (Page & Turnbull, 04/2009)

DPR 523A (L/95)
*Required information
The building at 1028 2nd Street is located on the northwest corner of the intersection of K and 2nd streets and features two hollow sidewalk segments that wrap the corner in an L-shaped plan. The 1028 2nd Street hollow sidewalk currently houses a tattoo shop. The eastern hollow sidewalk segment parallels 2nd Street and the southern segment parallels K Street. The segments feature brick building walls that support the 1028 2nd Street building on the west and north. The brick building walls contain door and window openings surmounted by brick lintels. On the east and south, the sidewalk is supported by butressed brick street retaining walls. The hollow sidewalk segment terminates at its north and west ends in drywall finished walls. Both hollow sidewalk segments feature tiled floors and concrete plaster finished ceilings.

The building at 1028 2nd Street is located on the northwest corner of the intersection of K and 2nd streets and features two hollow sidewalk segments that wrap the corner in an L-shaped plan. The 1028 2nd Street hollow sidewalk currently houses a tattoo shop. The eastern hollow sidewalk segment parallels 2nd Street and the southern segment parallels K Street. The segments feature brick building walls that support the 1028 2nd Street building on the west and north. The brick building walls contain door and window openings surmounted by brick lintels. On the east and south, the sidewalk is supported by butressed brick street retaining walls. The hollow sidewalk segment terminates at its north and west ends in drywall finished walls. Both hollow sidewalk segments feature tiled floors and concrete plaster finished ceilings.

The building at 1028 2nd Street is located on the northwest corner of the intersection of K and 2nd streets and features two hollow sidewalk segments that wrap the corner in an L-shaped plan. The 1028 2nd Street hollow sidewalk currently houses a tattoo shop. The eastern hollow sidewalk segment parallels 2nd Street and the southern segment parallels K Street. The segments feature brick building walls that support the 1028 2nd Street building on the west and north. The brick building walls contain door and window openings surmounted by brick lintels. On the east and south, the sidewalk is supported by butressed brick street retaining walls. The hollow sidewalk segment terminates at its north and west ends in drywall finished walls. Both hollow sidewalk segments feature tiled floors and concrete plaster finished ceilings.

The building at 1028 2nd Street is located on the northwest corner of the intersection of K and 2nd streets and features two hollow sidewalk segments that wrap the corner in an L-shaped plan. The 1028 2nd Street hollow sidewalk currently houses a tattoo shop. The eastern hollow sidewalk segment parallels 2nd Street and the southern segment parallels K Street. The segments feature brick building walls that support the 1028 2nd Street building on the west and north. The brick building walls contain door and window openings surmounted by brick lintels. On the east and south, the sidewalk is supported by butressed brick street retaining walls. The hollow sidewalk segment terminates at its north and west ends in drywall finished walls. Both hollow sidewalk segments feature tiled floors and concrete plaster finished ceilings.
Western hollow sidewalk segment, looking north (Page & Turnbull, 04/2009)

Southern hollow sidewalk segment, looking east (Page & Turnbull, 04/2009)
The building at 1007 6th Street is located on the southeast corner of the intersection of 6th and J streets and contains two segments of hollow sidewalks. The 1007 6th Street hollow sidewalk segments are not currently utilized. The northern hollow sidewalk segment parallels J Street and features concrete piers and walls clad in drywall that support the 1007 6th Street building on the south, and brick, butressed street retaining walls on the north. This hollow sidewalk segment is broken into two spaces divided by a concrete block partition wall. The eastern end of the segment is enclosed by a brick end wall. The western hollow sidewalk segment parallels 6th Street. Concrete piers and drywall clad walls support the 1007 6th Street building on the east side of the sidewalk and a brick, butressed street retaining wall supports the sidewalk on the west. The south end of the western segment terminates in a brick and hollow clay tile end wall. Both hollow sidewalk segments feature concrete flooring and a concrete slab ceiling.

The building at 1007 6th Street is located on the southeast corner of the intersection of 6th and J streets and contains two segments of hollow sidewalks. The 1007 6th Street hollow sidewalk segments are not currently utilized. The northern hollow sidewalk segment parallels J Street and features concrete piers and walls clad in drywall that support the 1007 6th Street building on the south, and brick, butressed street retaining walls on the north. This hollow sidewalk segment is broken into two spaces divided by a concrete block partition wall. The eastern end of the segment is enclosed by a brick end wall. The western hollow sidewalk segment parallels 6th Street. Concrete piers and drywall clad walls support the 1007 6th Street building on the east side of the sidewalk and a brick, butressed street retaining wall supports the sidewalk on the west. The south end of the western segment terminates in a brick and hollow clay tile end wall. Both hollow sidewalk segments feature concrete flooring and a concrete slab ceiling.
Western segment, south brick end wall, looking southeast (Page & Turnbull, 03/2009)

Exterior sidewalk surface above western segment, looking south from J Street (Page & Turnbull, 03/2009)
State of California — The Resources Agency
DEPARTMENT OF PARKS AND RECREATION

PRIMARY RECORD

Other Listings

NRHP Status Code 6Z

Page 1 of 2

*Resource name(s) or number (assigned by recorder) 1015 7th Street, Hollow Sidewalk

P1. Other Identifier:

*P2. Location: □ Not for Publication ✅ Unrestricted

and (P2b and P2c or P2d. Attach a Location Map as necessary.)

*P3a. Description: (Describe resource and its major elements. Include design, materials, condition, alterations, size, setting, and boundaries.)

The building at 1015 7th Street is located on the northeast corner of the intersection of 7th and Merchant Streets and features two segments of hollow sidewalks. The southern hollow sidewalk segment, which parallels Merchant Street, is not utilized, and the western hollow sidewalk segment, which parallels 7th Street, currently houses a conference room and office space. The southern hollow sidewalk segment features concrete piers that support the 1015 7th Street building on the south and poured concrete street retaining walls on the north. This hollow sidewalk segment is enclosed at its west end by a poured concrete end wall; the east end wall was not visible. The western hollow sidewalk segment is supported by the 1015 7th Street building walls on the east and street retaining walls finished with drywall on the west. The segment terminates at the south in a drywall clad wall and in the north in a wall finished with wood paneling. The southern hollow sidewalk segment features concrete flooring and a concrete slab ceiling. The western segment is carpeted and features a drop ceiling. At street level, a granite curb at the corner of 9th and J Streets is located above the hollow sidewalk segment.

*P4. Resources Present: ☑ Building ☑ Structure ☑ Object ☑ Site ☑ District ☑ Element of District ☑ Other

*P5b. Photo: (view and date)

Southern segment, brick piers, looking south and up
05/2009

*P6. Date Constructed/Age and Sources: ☑ Historic

1868
HEC, 2009.

*P7. Owner and Address:

Merchants National Bank
P.O. Box 747
Sacramento, CA 95815

*P8. Recorded by:

Page & Turnbull, Inc. (MEG)
2401 C Street, Ste. B
Sacramento, CA 95816

*P9. Date Recorded:

05/21/2009

*P10. Survey Type:

Reconnaissance

*P11. Report Citation: (Cite survey report and other sources, or enter “none”) Raised Streets and Hollow Sidewalks Survey Report

*Attachments: ☑ None ☑ Location Map ☑ Sketch Map ☑ Continuation Sheet ☑ Building, Structure, and Object Record

Archaeological Record ☑ District Record ☑ Linear Feature Record ☑ Milling Station Record ☑ Rock Art Record

Artifact Record ☑ Photograph Record ☑ Other (list)

DPR 523A (1/95)

*Required information
Western segment, containing conference room, looking southwest (Page & Turnbull, 05/2009)

Granite curb, intersection of 7th and Merchant Streets (Page & Turnbull, 05/2009)
P1. Other Identifier:

*P2. Location: ☑ Unrestricted
and (P2b and P2c or P2d. Attach a Location Map as necessary.)

*a. County: Sacramento

*b. USGS 7.5' Quad: Sacramento East

c. Address: 1125 9th Street, Sacramento

d. UTM: Zone: mE/ mN (G.P.S.)

e. Other Locational Data: Assessor’s Parcel Number (Map, Block, Lot): 0060102016000

*P3a. Description: (Describe resource and its major elements. Include design, materials, condition, alterations, size, setting, and boundaries.)

The building at 1125 9th Street is located on the southeast corner of the intersection of 9th and J streets and features two segments of hollow sidewalks. The 1125 9th Street hollow sidewalk segments are not currently utilized. The southern hollow sidewalk segment parallels L Street and the western segment parallels 9th Street. Both hollow sidewalk segments feature concrete parging brick piers that support the 1125 9th Street building on the north and east, respectively, and poured concrete street retaining walls on the south and west, respectively. Wood frame partitions with door openings and wood panel doors fill the spaces between several of the concrete piers which support the 1125 9th Street building in both the southern and western segments. Both hollow sidewalk segments terminate in poured concrete walls, feature concrete floors, and have concrete slab ceilings. Sidewalk prism lights provide light to the hollow sidewalk spaces from the exterior.

*P3b. Resource Attributes: (list attributes and codes) HP39. Other

*P4. Resources Present: ☑ Building ☑ Structure ☑ Object ☑ Site ☑ District ☑ Element of District ☑ Other

P5b. Photo: (view and date)
Western segment, parged brick piers, looking north
03/2009

*P6. Date Constructed/Age and Sources: ☑ Historic
1871-1876
HEC, 2009.

*P7. Owner and Address:
Rah Partnership, LP
1125 9th Street
Sacramento, CA 95814

*P8. Recorded by:
Page & Turnbull, Inc. (MEG)
2401 C Street, Ste. B
Sacramento, CA 95816

*P9. Date Recorded:
05/21/2009

*P10. Survey Type:

Reconnaissance

*P11. Report Citation: (Cite survey report and other sources, or enter “none”) Raised Streets and Hollow Sidewalks Survey Report

*Attachments: ☑ None ☑ Location Map ☑ Sketch Map ☑ Continuation Sheet ☑ Building, Structure, and Object Record ☑ Archaeological Record ☑ District Record ☑ Linear Feature Record ☑ Milling Station Record ☑ Rock Art Record ☑ Artifact Record ☑ Photograph Record ☑ Other (list)

DPR 523A (1/95)

*Required information
Southern segment, street retaining wall, looking south (Page & Turnbull, 03/2009)

Western segment, wood frame partition with wood panel door between concrete piers, looking east (Page & Turnbull, 03/2009)
The building at 1016-1020 10th Street is located on the west side of 10th Street, between K Street and the J/K Alley, and features one hollow sidewalk segment that parallels 10th Street. The hollow sidewalk segment is not currently utilized. It features a wood and steel support system supporting the 1016-1020 10th Street building on the west and a poured concrete street retaining wall on the east. The hollow sidewalk segment is enclosed at its north and south ends by poured concrete end walls, features concrete flooring, and a concrete ceiling. The J/K Alley at the northern edge of the property does not feature hollow sidewalks. The building’s northern wall is comprised of brick and poured concrete.
Detail of ceiling, showing infilled skylight (Page & Turnbull, 03/2009)

Looking east (Page & Turnbull, 03/2009)
The building at 924 12th Street is located on the northeast corner of the intersection of 11th and J streets and contains two segments of hollow sidewalks; only the southern hollow sidewalk segment was accessible for survey and currently functions as a storage area. The southern hollow sidewalk segment parallels J Street. It is supported by a poured concrete partition wall which bisects the segment and is supported by poured concrete street retaining walls on the south. The concrete wall is pierced by an opening with a flush, metal door. A poured concrete wall and a hollow clay tile wall support the hollow sidewalk segment on its west and east ends, respectively. The hollow sidewalk segment features a concrete floor and a concrete slab ceiling. An elevator accesses the hollow sidewalk space from street level.
Recorded by: Page & Turnbull
Date: 05/21/2009

- **East end wall of hollow sidewalk segment (Page & Turnbull, 05/2009)**
- **Elevator hatch to J Street, in eastern portion of hollow sidewalk segment (Page & Turnbull, 05/2009)**
State of California — The Resources Agency
DEPARTMENT OF PARKS AND RECREATION

PRIMARY RECORD

<table>
<thead>
<tr>
<th>Other Listings</th>
<th>Review Code</th>
<th>Reviewer</th>
<th>Date</th>
</tr>
</thead>
</table>

Resource name(s) or number
(assigned by recorder)
1005 12th Street, Hollow Sidewalk

P1. Other Identifier:

- **P2. Location:**
 □ Not for Publication □ Unrestricted
 a. County: Sacramento
 and (P2b and P2c or P2d. Attach a Location Map as necessary.)
 b. USGS 7.5’ Quad: Sacramento East
 c. Address: 1005 12th Street, Sacramento
 City: Sacramento
 Zip: 95814
 d. UTM: Zone: mE/mN (G.P.S.)
 e. Other Locational Data: Assessor’s Parcel Number (Map, Block, Lot): 00601110020000

P3a. Description:
(Describe resource and its major elements. Include design, materials, condition, alterations, size, setting, and boundaries.)

The building at 1005 12th Street is located on the southeast corner of 12th and J streets and features one hollow sidewalk segment on the north that parallels J Street. The 1005 12th Street hollow sidewalk segment currently holds electrical meters for the building. The hollow sidewalk segment features concrete piers that support the 1005 12th Street building on the south and butressed brick street retaining walls clad in stucco on the north. The hollow sidewalk segment is enclosed at its east and west ends by walls clad in drywall. The hollow sidewalk segment features concrete flooring and concrete slab ceiling. The hollow sidewalk segment is accessed by an elevator from the street level.

P3b. Resource Attributes:
(list attributes and codes)

HP39. Other

P4. Resources Present:

- Building
- Structure
- Object
- Site
- District
- Element of District
- Other

P5b. Photo:
(view and date)

Northern segment, brick piers & retaining wall, looking east
04/2009

P6. Date Constructed/Age and Sources:

- Historic
 ca. 1870

P7. Owner and Address:

- Corum Family Partnership
 1005 12th Street
 Sacramento, CA 95814

P8. Recorded by:

- Page & Turnbull, Inc. (MEG)
 2401 C Street, Ste. B
 Sacramento, CA 95816

P9. Date Recorded:

05/21/2009

P10. Survey Type:

Reconnaissance

P11. Report Citation:
(Cite survey report and other sources, or enter “none”)
Raised Streets and Hollow Sidewalks Survey Report

Attachments:

- None
- Location Map
- Sketch Map
- Continuation Sheet
- Building, Structure, and Object Record
- Archaeological Record
- District Record
- Linear Feature Record
- Milling Station Record
- Rock Art Record
- Artifact Record
- Photograph Record
- Other (list)

DPR 523A (L/95)

Required information
Interior detail of the elevator on J Street (Page & Turnbull, 04/2009)

Exterior of elevator hatch on J Street (Page & Turnbull, 04/2009)
State of California — The Resources Agency
DEPARTMENT OF PARKS AND RECREATION
PRIMARY RECORD

<table>
<thead>
<tr>
<th>Other Listings</th>
<th>Review Code</th>
<th>Reviewer</th>
<th>Date</th>
</tr>
</thead>
</table>

- **Miscellaneous**

<table>
<thead>
<tr>
<th>Primary #</th>
<th>HRI #</th>
<th>Trinomial</th>
<th>NRHP Status Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>1013 Front Street, Hollow Sidewalk</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Page 1 of 2

P1. Other Identifier:

- **a. County:** Sacramento

P2. Location:

- **Not for Publication**
- **Unrestricted**
- **Sacramento West**
- **Date:** 1998

P3a. Description:

The building at 1013 Front Street is located on the southeast corner of the intersection of Front and J streets and contains two segments of hollow sidewalks; only the western hollow sidewalk segment paralleling Front Street was accessible for survey. The 1013 Front Street hollow sidewalk segment currently functions as an office and wine storage area. Brick and concrete block walls support the 1013 Front Street building on the east, and brick butressed retaining walls and concrete block retaining walls support the sidewalk on the west. The segment terminates at its north and south ends in concrete block end walls. The hollow sidewalk segment features concrete flooring and a concrete slab ceiling.

P3b. Resource Attributes:

- **HP39. Other**

P4. Resources Present:

- **Building**
- **Structure**
- **Object**
- **Site**
- **District**
- **Element of District**
- **Other**

P5. Photo:

- **View and date:**
 - Hollow sidewalk segment, looking southwest
 - 04/2009

P6. Date Constructed/Age and Sources:

- **Historic**
- 1864
- HEC, 2009.

P7. Owner and Address:

- [Address information]

P8. Recorded by:

- Page & Turnbull, Inc. (MEG)
- 2401 C Street, Ste. B
- Sacramento, CA 95816

P9. Date Recorded:

- 05/26/2009

P10. Survey Type:

- Reconnaissance

P11. Report Citation:

- Raised Streets and Hollow Sidewalks Survey Report

Attachments:

- None
- Location Map
- Sketch Map
- Continuation Sheet
- Building, Structure, and Object Record
- Archaeological Record
- District Record
- Linear Feature Record
- Milling Station Record
- Rock Art Record
- Artifact Record
- Photograph Record
- Other (list)

DPR 523A (1/95)

- **Required information**
Hollow sidewalk segment, looking northwest (Page & Turnbull, 04/2009)

Hollow sidewalk segment, looking northeast at brick wall supporting 1013 Front Street building (Page & Turnbull, 04/2009)
P1. Other Identifier:

*P2a. County: Sacramento

*P3a. Description: Two hollow sidewalk segments border a sub-grade parking lot at 1121 Front Street on the northeast corner of the intersection of Front and L Streets. The 1121 Front Street hollow sidewalk segments have an L-shaped plan that wraps the street corner, with a leg that parallels Front Street on the west, and a leg that parallels L Street on the south. Poured concrete columns support the overhanging street level sidewalk on the east and north, with the east north sides of the hollow sidewalk space open to the exterior. A brick buttressed street retaining wall supports the west and south edges of the sidewalk. The hollow sidewalk segment terminates in brick walls on the north and east ends. The hollow sidewalk segments feature a dirt floor and a concrete slab ceiling.

*P3b. Resource Attributes: list attributes and codes

HP39. Other

*P4. Resources Present: Building Structure Object Site District Element of District Other

P5b. Photo: (view and date)
Southern hollow sidewalk segment, looking southeast
04/2009

*P6. Date Constructed/Age and Sources: Historic
1864-1865
HEC, 2009.

*P7. Owner and Address:
Harvego Real Estate, LLC
2356 Gold Meadow Way, 205
Rancho Cordova, CA 95670

*P8. Recorded by:
Page & Turnbull, Inc. (MEG)
2401 C Street, Ste. B
Sacramento, CA 95816

*P9. Date Recorded:
05/25/2009

*P10. Survey Type: Reconnaissance

*P11. Report Citation: (Cite survey report and other sources, or enter “none”) Raised Streets and Hollow Sidewalks Survey Report

*Attachments: None Location Map Sketch Map Continuation Sheet Building, Structure, and Object Record Archaeological Record District Record Linear Feature Record Milling Station Record Rock Art Record Artifact Record Photograph Record Other (list)

DPR 523A (L/95)
<table>
<thead>
<tr>
<th>Page of</th>
<th>2 of 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resource Name or # (Assigned by recorder)</td>
<td>1121 Front Street, Hollow Sidewalk</td>
</tr>
<tr>
<td>Recorded by:</td>
<td>Page & Turnbull</td>
</tr>
<tr>
<td>Date</td>
<td>05/25/2009</td>
</tr>
<tr>
<td>Continuation</td>
<td>☑</td>
</tr>
<tr>
<td>Update</td>
<td>☐</td>
</tr>
</tbody>
</table>

Western hollow sidewalk segment, looking north (Page & Turnbull, 04/2009)
The building at 114 J Street is located on the south side of J Street, between Front and 2nd street, and contains one hollow sidewalk segment. The 114 J Street hollow sidewalk segment currently functions as a storage area. This hollow sidewalk segment parallels J Street and features brick walls that support the 114 J Street building on the north and butressed brick street retaining walls on the north. The brick walls supporting the building feature window and door openings surmounted by a lintel of bricks coursed in a soldier configuration. One of the two door openings is infilled with brick, and the remaining opening includes a granite threshold. The window openings feature corbeled brick lintels reinforced by metal straps and are covered by single metal panels. The hollow sidewalk segment is enclosed at its east and west ends by brick walls. The hollow sidewalk segment contains concrete flooring and a ceiling covered by cork.

*P3a. Description: (Describe resource and its major elements. Include design, materials, condition, alterations, size, setting, and boundaries.)

The building at 114 J Street is located on the south side of J Street, between Front and 2nd street, and contains one hollow sidewalk segment. The 114 J Street hollow sidewalk segment currently functions as a storage area. This hollow sidewalk segment parallels J Street and features brick walls that support the 114 J Street building on the north and butressed brick street retaining walls on the north. The brick walls supporting the building feature window and door openings surmounted by a lintel of bricks coursed in a soldier configuration. One of the two door openings is infilled with brick, and the remaining opening includes a granite threshold. The window openings feature corbeled brick lintels reinforced by metal straps and are covered by single metal panels. The hollow sidewalk segment is enclosed at its east and west ends by brick walls. The hollow sidewalk segment contains concrete flooring and a ceiling covered by cork.

*P3b. Resource Attributes: (list attributes and codes) HP39. Other

*P4. Resources Present: □ Building ☑ Structure □ Object □ Site □ District □ Element of District □ Other

P5b. Photo: (view and date) Hollow sidewalk segment, looking northwest
04/2009

*P6. Date Constructed/Age and Sources: ☑ Historic
1864
HEC, 2009.

*P7. Owner and Address:
Beale Family Living Trust
3000 Dorlaine Court
Sacramento, CA 95821

*P8. Recorded by:
Page & Turnbull, Inc. (MEG)
2401 C Street, Ste. B
Sacramento, CA 95816

*P9. Date Recorded:
05/27/2009

P10. Survey Type:
Reconnaissance

*P11. Report Citation: (Cite survey report and other sources, or enter “none”) Raised Streets and Hollow Sidewalks Survey Report

*Attachments: □ None □ Location Map □ Sketch Map ☑ Continuation Sheet □ Building, Structure, and Object Record
□ Archaeological Record □ District Record □ Linear Feature Record □ Milling Station Record □ Rock Art Record
□ Artifact Record □ Photograph Record □ Other (list)
DPR 523A (L/95)

*Required information
Brick walls supporting 114 J Street, looking south (Page & Turnbull, 04/2009)

Granite threshold at opening in building wall, looking northeast (Page & Turnbull, 04/2009)
The building at 117 J Street is located on the north side of J Street, between Front and 2nd streets, and contains one hollow sidewalk segment. The 117 J Street hollow sidewalk segment currently functions as a night club lounge. This hollow sidewalk segment parallels J Street and features brick piers that support the 117 J Street building on the north. On the south and west, buttressed brick street retaining walls parallel J Street and Firehouse Alley, respectively. The hollow sidewalk segment is enclosed at its east end by a wall clad with drywall. The hollow sidewalk segment features a concrete floor and a concrete slab ceiling that is supported at intervals by poured concrete columns.

P3b. Resource Attributes:

- HP39. Other

P4. Resources Present:

- Building
- Structure
- Object
- Site
- District
- Element of District
- Other

P5b. Photo:

Hollow sidewalk segment, looking south

04/2009

P6. Date Constructed/Age and Sources:

- Historic

1864

HEC, 2009.

P7. Owner and Address:

Old Town Bennett Investors et al

540 Fulton Avenue

Sacramento, CA 95825

P8. Recorded by:

Page & Turnbull, Inc. (MEG)

2401 C Street, Ste. B

Sacramento, CA 95816

P9. Date Recorded:

05/27/2009

P10. Survey Type:

- Reconnaissance

P11. Report Citation:

Raised Streets and Hollow Sidewalks Survey Report

Attachments:

- None
- Location Map
- Sketch Map
- Continuation Sheet
- Building, Structure, and Object Record
- Archaeological Record
- District Record
- Linear Feature Record
- Milling Station Record
- Rock Art Record
- Artifact Record
- Photograph Record
- Other (list)

DPR 523A (1/95)

Required information
Looking southwest at street retaining walls along J Street & and Firehouse Alley (Page & Turnbull, 04/2009)

Hollow sidewalk segment, looking southeast, poured concrete column in foreground (Page & Turnbull, 04/2009)
The building at 122 J Street is located on the south side of J Street, between Front and 2nd streets, and contains one hollow sidewalk segment. The 122 J Street hollow sidewalk segment currently functions as a storage area. The hollow sidewalk segment parallels J Street and features brick piers with retrofitted concrete reinforcing beams that support the 122 J Street building on the south and buttressed brick street retaining walls on the north. The hollow sidewalk segment is enclosed at its west end by a concrete block wall and at its east end by a brick wall. The hollow sidewalk segment features a concrete floor and a concrete slab ceiling that is supported at intervals by poured concrete columns.

The building at 122 J Street is located on the south side of J Street, between Front and 2nd streets, and contains one hollow sidewalk segment. The 122 J Street hollow sidewalk segment currently functions as a storage area. The hollow sidewalk segment parallels J Street and features brick piers with retrofitted concrete reinforcing beams that support the 122 J Street building on the south and buttressed brick street retaining walls on the north. The hollow sidewalk segment is enclosed at its west end by a concrete block wall and at its east end by a brick wall. The hollow sidewalk segment features a concrete floor and a concrete slab ceiling that is supported at intervals by poured concrete columns.

The building at 122 J Street is located on the south side of J Street, between Front and 2nd streets, and contains one hollow sidewalk segment. The 122 J Street hollow sidewalk segment currently functions as a storage area. The hollow sidewalk segment parallels J Street and features brick piers with retrofitted concrete reinforcing beams that support the 122 J Street building on the south and buttressed brick street retaining walls on the north. The hollow sidewalk segment is enclosed at its west end by a concrete block wall and at its east end by a brick wall. The hollow sidewalk segment features a concrete floor and a concrete slab ceiling that is supported at intervals by poured concrete columns.

The building at 122 J Street is located on the south side of J Street, between Front and 2nd streets, and contains one hollow sidewalk segment. The 122 J Street hollow sidewalk segment currently functions as a storage area. The hollow sidewalk segment parallels J Street and features brick piers with retrofitted concrete reinforcing beams that support the 122 J Street building on the south and buttressed brick street retaining walls on the north. The hollow sidewalk segment is enclosed at its west end by a concrete block wall and at its east end by a brick wall. The hollow sidewalk segment features a concrete floor and a concrete slab ceiling that is supported at intervals by poured concrete columns.
Brick building walls supporting 122 J Street and poured concrete columns, looking south (Page & Turnbull, 04/2009)

Inside (south side) of building wall supporting 122 J Street, with concrete reinforcing beams, looking north (Page & Turnbull, 04/2009)
The building at 123 J Street is located on the north side of J Street, between Front and 2nd streets, and contains one hollow sidewalk segment. The 123 J Street hollow sidewalk segment currently functions as a print shop. This hollow sidewalk segment parallels J Street and features brick walls that support the 123 J Street building on the north and buttressed brick street retaining walls on the south. The brick building walls supporting 123 J Street feature door openings. The hollow sidewalk segment is enclosed on its east end by a wall clad with drywall and on its west end by a brick wall. The hollow sidewalk segment contains carpeted flooring and a drywalled ceiling supported at intervals by square drywalled piers.

P3b. Resource Attributes: (list attributes and codes)

P4. Resources Present:

P5b. Photo: (view and date)

P6. Date Constructed/Age and Sources:

P7. Owner and Address:

P8. Recorded by:

P9. Date Recorded:

P10. Survey Type:

P11. Report Citation: (Cite survey report and other sources, or enter “none”)

Attachments:

Required information
Looking north at the brick building wall supporting the 123 J Street building (Page & Turnbull, 04/2009)

Hollow sidewalk segment, looking northeast (Page & Turnbull, 04/2009)
State of California — The Resources Agency
DEPARTMENT OF PARKS AND RECREATION
PRIMARY RECORD

Other Listings

Review Code Reviewer Date

Resource name(s) or number (assigned by recorder)
128 J Street, Hollow Sidewalk

P1. Other Identifier:

*P2. Location:
☐ Not for Publication ☒ Unrestricted
*a. County: Sacramento

and (P2b and P2c or P2d. Attach a Location Map as necessary.)

*P3a. Description: (Describe resource and its major elements. Include design, materials, condition, alterations, size, setting, and boundaries.)

The building at 128 J Street is located on the south side of J Street, between Front and 2nd streets, and contains one hollow sidewalk segment. The 128 J Street hollow sidewalk segment currently functions as a storage area. This hollow sidewalk segment parallels J Street and features concrete plastered walls that support the 128 J Street building on the north and buttressed brick street retaining walls on the north. The building walls feature pilasters and engaged piers that appear to provide additional support to the 128 J Street building. The hollow sidewalk segment is enclosed at its east and west ends by brick walls. The hollow sidewalk segment features carpeted flooring and a concrete slab ceiling that is finished with concrete plaster and supported at intervals by poured concrete columns.

*P3b. Resource Attributes: (list attributes and codes)
HP39. Other

*P4. Resources Present:

Building Structure Object Site District Element of District Other

P5b. Photo: (view and date)

Hollow sidewalk segment, looking east
04/2009

*P6. Date Constructed/Age and Sources:
✓ Historic
1864
HEC, 2009.

*P7. Owner and Address:

Yu Family Revocable Trust
9431 Maris Lane
Elk Grove, CA 95624

*P8. Recorded by:

Page & Turnbull, Inc. (MEG)
2401 C Street, Ste. B
Sacramento, CA 95816

*P9. Date Recorded:

05/27/2009

*P10. Survey Type:

Reconnaissance

*P11. Report Citation: (Cite survey report and other sources, or enter “none”)
Raised Streets and Hollow Sidewalks Survey Report

*Attachments:
None Location Map Sketch Map Continuation Sheet Building, Structure, and Object Record Archaeological Record District Record Linear Feature Record Milling Station Record Rock Art Record Artifact Record Photograph Record Other (list)

DPR 523A (1/95)

*Required information
Finished building wall with engaged piers supporting 128 J Street, looking southeast. Poured concrete columns in foreground. (Page & Turnbull, 04/2009)

North side of building wall supporting 128 J Street with pilasters, looking northeast from basement (Page & Turnbull, 04/2009)
The building at 629 J Street is located on the northwest corner of the intersection of 7th and J Streets and contains two segments of hollow sidewalks. The 629 J Street hollow sidewalk segments currently house an office, storage space, and mechanical equipment. The southern hollow sidewalk segment parallels J Street and features brick and hollow clay tile building walls that support the 629 J Street building on the north, and poured concrete street retaining walls on the south. This hollow sidewalk segment is enclosed at its west end by a concrete block wall and terminates on the east in a poured concrete retaining wall. The eastern hollow sidewalk segment parallels 7th Street. Brick and hollow clay tile building walls support the 629 J Street building on the west side of the sidewalk and a poured concrete street retaining wall supports the sidewalk on the east. The eastern hollow sidewalk segment is divided into several rooms by hollow clay tile partition walls. The south end of the segment terminates in a poured concrete retaining wall and the north end of the segment terminates in a hollow clay tile wall. Both hollow sidewalk segments feature concrete floors and concrete slab ceilings.

P3b. Resource Attributes:

(Describe resource and its major elements. Include design, materials, condition, alterations, size, setting, and boundaries.)

Southern segment, hollow clay tile and brick walls, looking north

P5b. Photo:

(view and date)

02/2009

P6. Date Constructed/Age and Sources:

Historic

1868-1876

HEC, 2009.

P7. Owner and Address:

James W Cameron, Jr.

629 J Street

Sacramento, CA 95814

P8. Recorded by:

Page & Turnbull, Inc. (MEG)

2401 C Street, Ste. B

Sacramento, CA 95816

P9. Date Recorded:

05/20/2009

P10. Survey Type:

Reconnaissance

P11. Report Citation:

(Cite survey report and other sources, or enter “none”) Raised Streets and Hollow Sidewalks Survey Report

Attachments:

- None
- Location Map
- Sketch Map
- Continuation Sheet
- Building, Structure, and Object Record
- Archaeological Record
- District Record
- Linear Feature Record
- Milling Station Record
- Rock Art Record
- Artifact Record
- Photograph Record
- Other (list)

DPR 523A (1/95)

Required information
Street retaining wall of eastern segment, looking northeast (Page & Turnbull, 02/2009)

Eastern segment, hollow clay tile building wall, looking northwest (Page & Turnbull, 02/2009)
The building at 707 J Street is located on the north side of J Street, between 7th and 8th streets, and contains one hollow sidewalk segment. The 707 J Street hollow sidewalk segment currently functions as a storage area. The hollow sidewalk segment parallels J Street and features brick piers that support the 707 J Street building on the north and butressed brick street retaining walls on the south. The hollow sidewalk segment is enclosed at its east and west ends by sheets of corrugated metal. The hollow sidewalk segment features a concrete floor and a concrete slab ceiling. An elevator accesses the hollow sidewalk from the street level.
Brick street retaining walls and corrugated metal end partition (at right), looking southwest (Page & Turnbull, 03/2009)

Exterior of elevator hatch on J Street (Page & Turnbull, 03/2009)
P1. Other Identifier: 715 Merchant Street, Hollow Sidewalk

P2. Location:
- Not for Publication
- Unrestricted
- County: Sacramento

P3a. Description:
Two buildings, one at 712 J Street and the other at 715 Merchant Street, stand on this parcel. The building at 715 Merchant Street is located on the north side of Merchant Street, between 7th and 8th streets, and contains one hollow sidewalk segment. The 715 Merchant Street hollow sidewalk segment is not currently utilized. The hollow sidewalk segment parallels Merchant Street and features a brick building wall with door openings that supports the 715 Merchant Street building on the north and a brick street retaining wall with corbelled piers on the south. The hollow sidewalk segment is enclosed at its east and west ends by brick walls. The hollow sidewalk segment features a concrete floor and a concrete slab ceiling reinforced with steel I-beams and supported by steel X-brace frames. An elevator accesses the hollow sidewalk from the street level.

P3b. Resource Attributes: (list attributes and codes) HP39. Other

P4. Resources Present:
- Building
- Structure
- Object
- Site
- District
- Element of District
- Other

P5b. Photo:
Brick street retaining wall with corbelled piers, looking southeast
05/2009

P6. Date Constructed/Age and Sources:
Historic
1868
HEC, 2009.

P7. Owner and Address:
Javed T/Anma Siddiqui, et al
1808 J Street
Sacramento, CA 95811

P8. Recorded by:
Page & Turnbull, Inc. (MEG)
2401 C Street, Ste. B
Sacramento, CA 95816

P9. Date Recorded:
05/19/2009

P10. Survey Type:
Reconnaissance

P11. Report Citation: (Cite survey report and other sources, or enter “none”)
Raised Streets and Hollow Sidewalks Survey Report

Attachments:
- None
- Location Map
- Sketch Map
- Continuation Sheet
- Building, Structure, and Object Record
- Archaeological Record
- District Record
- Linear Feature Record
- Milling Station Record
- Rock Art Record
- Artifact Record
- Photograph Record
- Other (list)

DPR 523A (1/95)
<table>
<thead>
<tr>
<th>Resource Name or # (Assigned by recorder)</th>
<th>712 J Street, Hollow Sidewalk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recorded by:</td>
<td>Page & Turnbull</td>
</tr>
<tr>
<td>Date</td>
<td>05/19/2009</td>
</tr>
<tr>
<td></td>
<td>Continuation</td>
</tr>
</tbody>
</table>

Hollow sidewalk segment, looking southwest (Page & Turnbull, 05/2009)

Building wall supporting 715 Merchant Street, looking northeast (Page & Turnbull, 05/2009)
State of California — The Resources Agency
DEPARTMENT OF PARKS AND RECREATION
PRIMARv RECORD

Other Listings
Review Code Reviewer Date

Page 1 of 2 *Resource name(s) or number (assigned by recorder) 725 J Street, Hollow Sidewalk

P1. Other Identifier:

*P2. Location: [] Not for Publication [] Unrestricted *a. County: Sacramento
and (P2b and P2c or P2d. Attach a Location Map as necessary.)

*P2b. USGS 7.5' Quad: Sacramento East Date: 1998
*P2c. Address: 725 J Street, Sacramento City: Sacramento Zip: 95814
*P2d. UTM: Zone: mE/ mN (G.P.S.)
*P2e. Other Locational Data: Assessor’s Parcel Number (Map, Block, Lot): 00600340100000

*P3a. Description: (Describe resource and its major elements. Include design, materials, condition, alterations, size, setting, and boundaries.)

The building at 725 J Street is located on the north side of J Street, between 7th and 8th streets, and contains one hollow sidewalk segment. The 725 J Street hollow sidewalk segment currently functions as a storage area. The hollow sidewalk segment parallels J Street and features concrete piers on brick footings that support the 725 J Street building on the north and a buttressed brick street retaining wall on the south. The hollow sidewalk segment is enclosed at its east and west ends by brick end walls clad with stucco. The hollow sidewalk segment features a concrete floor and a concrete slab ceiling. Granite stairs located at the center of the street retaining wall on the south side of the sidewalk once provided access from J Street.

*P3b. Resource Attributes: (list attributes and codes) HP39. Other

*P4. Resources Present: [] Building [] Structure [] Object [] Site [] District [] Element of District [] Other

*P5b. Photo: (view and date) Concrete piers on brick footings supporting building, looking southwest 05/2009

*P6. Date Constructed/Age and Sources: [] Historic 1868
HEC, 2009.

*P7. Owner and Address:
J Street Reformation Partnership
2150 River Plaza Drive
Sacramento, CA 95833

*P8. Recorded by:
Page & Turnbull, Inc. (MEG) 2401 C Street, Ste. B
Sacramento, CA 95816

*P9. Date Recorded: 05/19/2009

*P10. Survey Type: Reconnaissance

*P11. Report Citation: (Cite survey report and other sources, or enter “none”) Raised Streets and Hollow Sidewalks Survey Report

*Attachments: [] None [] Location Map [] Sketch Map [] Continuation Sheet [] Building, Structure, and Object Record [] Archaeological Record [] District Record [] Linear Feature Record [] Milling Station Record [] Rock Art Record [] Artifact Record [] Photograph Record [] Other (list)

DPR 523A (1/95)

*Required information
Stucco-clad brick end wall, looking southeast (Page & Turnbull, 05/2009)

Granite stairs from hollow sidewalk to J Street, looking south (Page & Turnbull, 05/2009)
P1. Other Identifier:

P2. Location:
Not for Publication ☑ Unrestricted
and (P2b and P2c or P2d. Attach a Location Map as necessary.)

P3a. Description:
(Describe resource and its major elements. Include design, materials, condition, alterations, size, setting, and boundaries.)

The building at 729-731 J Street is located on the northwest corner of the intersection of 8th and J streets and contains two hollow segments in an L-shaped plan that wraps the street corner. The southern leg of the segments parallels J Street, and the eastern leg parallels 8th Street. The hollow sidewalk segments are not currently utilized. The segments are supported by the brick building walls of the 729-731 J Street building on the north and west, and by brick, buttressed street retaining walls on the south and east. The brick building walls feature arched door openings and wood door frames. In the southern leg of the segments, the door openings are framed by corbelled brackets. A wood partition extends east from the building wall into the eastern leg of the segments and features a door labeled “C. Flaherty.” The segments terminate in brick walls at the west and south ends and feature unfinished, dirt floors and a concrete slab ceiling that is pierced by prism lights that provide light from the street level exterior.

P3b. Resource Attributes: (list attributes and codes)

HP39. Other

P4. Resources Present:
☑ Building ☑ Structure ☐ Object ☐ Site ☐ District ☐ Element of District ☐ Other

P5b. Photo: (view and date)
Western segment, brick piers, looking north
02/2009

P6. Date Constructed/Age and Sources:
Historic
1868-1870
HEC, 2009.

P7. Owner and Address:
Porter Family Trust
5250 Valhalla Drive
Carmichael, CA 95608

P8. Recorded by:
Page & Turnbull, Inc. (MEG)
2401 C Street, Ste. B
Sacramento, CA 95816

P9. Date Recorded:
05/19/2009

P10. Survey Type:
Reconnaissance

P11. Report Citation: (Cite survey report and other sources, or enter “none”)
Raised Streets and Hollow Sidewalks Survey Report

Attachments:
☐ None ☐ Location Map ☐ Sketch Map ☑ Continuation Sheet ☐ Building, Structure, and Object Record
☐ Archaeological Record ☐ District Record ☐ Linear Feature Record ☐ Milling Station Record ☐ Rock Art Record
☐ Artifact Record ☐ Photograph Record ☐ Other (list)

DPR 523A (1/95)
*Required information
Wood frame partition in eastern leg of the segment, looking northwest (Page & Turnbull, 02/2009)

Detail of sidewalk prism lights (Page & Turnbull, 02/2009)
State of California — The Resources Agency
DEPARTMENT OF PARKS AND RECREATION
PRIMARY RECORD

<table>
<thead>
<tr>
<th>Other Listings</th>
<th>Review Code</th>
<th>Reviewer</th>
<th>Date</th>
</tr>
</thead>
</table>

Page 1 of 2

P1. Other Identifier:

Resource name(s) or number (assigned by recorder)
900 J Street, Hollow Sidewalk

P2. Location:
- Not for Publication
- Unrestricted
and (P2b and P2c or P2d. Attach a Location Map as necessary.)

- **a. County:** Sacramento
- **b. USGS 7.5’ Quad:** Sacramento East
- **c. Address:** 900 J Street, Sacramento
 City: Sacramento
 Zip: 95814

- **d. UTM:** Zone:
 mE/ mN (G.P.S.)
 e. Other Locational Data: Assessor’s Parcel Number (Map, Block, Lot): 00601010030000

P3a. Description:
(Describe resource and its major elements. Include design, materials, condition, alterations, size, setting, and boundaries.)

The building at 900 J Street is located on the southeast corner of the intersection of 9th and J Streets and contains two segments of hollow sidewalks. The 900 J Street hollow sidewalk segments currently function as a showroom for a snowboard shop. The northern hollow sidewalk segment parallels J Street and features brick piers that support the 900 J Street building on the south, and buttressed brick street retaining walls on the north. This hollow sidewalk segment is enclosed at its east and west ends by walls finished with drywall. The western hollow sidewalk segment parallels 9th Street. Brick, piers with corbelled bases support the 900 J Street building on the east side of the sidewalk, and a buttressed brick street retaining wall supports the sidewalk on the west. The north and south ends of the segment terminate in walls finished with drywall. Both hollow sidewalk segments feature concrete floors and concrete slab ceilings. At street level, the hollow sidewalk includes a granite curb at the corner of 9th and J Streets.

P3b. Resource Attributes:
(list attributes and codes)

P4. Resources Present:
- Building
- Structure
- Object
- Site
- District
- Element of District
- Other

P5b. Photo:
(view and date)

Western segment, brick piers supporting building, looking north
02/2009

P6. Date Constructed/Age and Sources:
- Historic
 1868-1876
- HEC, 2009.

P7. Owner and Address:
- Palladian Props, LLC
 1425 River Park Drive, 404
 Sacramento, CA 95815

P8. Recorded by:
- Page & Turnbull, Inc. (MEG)
 2401 C Street, Ste. B
 Sacramento, CA 95816

P9. Date Recorded:
- 05/11/2009

P10. Survey Type:
- Reconnaissance

P11. Report Citation:
(Cite survey report and other sources, or enter “none”)
Raised Streets and Hollow Sidewalk Survey Report

Attachments:
- None
- Location Map
- Sketch Map
- Continuation Sheet
- Building, Structure, and Object Record
- Archaeological Record
- District Record
- Linear Feature Record
- Milling Station Record
- Rock Art Record
- Artifact Record
- Photograph Record
- Other (list)

DPR 523A (1/95)

Required information
Granite curb, intersection of 9th and J Streets (Page & Turnbull, 05/2009)

Street retaining wall in western segment, looking northwest (Page & Turnbull, 02/2009)
The building at 908 J Street is located on the south side of J Street, between 9th and 10th streets, and contains one hollow sidewalk segment. The 908 J Street hollow sidewalk segment currently functions as a storage area. The hollow sidewalk segment parallels J Street and features concrete and brick piers that support the 908 J Street building on the south, and brick butressed street retaining walls on the north. This hollow sidewalk segment is enclosed at its east and west ends by brick end walls. The hollow sidewalk segment features a concrete floor and a concrete slab ceiling supported by steel I-beams. The hollow sidewalk space includes a manhole with a starred cover in the sidewalk above.
Street retaining wall, looking northwest (Page & Turnbull, 03/2009)

Starred manhole cover in sidewalk above 908 J Street hollow sidewalk segment (Page & Turnbull, 03/2009)
P2. Location: ☑ Not for Publication ☑ Unrestricted
P2a. County: Sacramento
*P2b. USGS 7.5' Quad: Sacramento East
*P2c. Address: 910 J Street, Sacramento
P2d. Date: 1998
P2e. Address: 910 J Street, Sacramento
P2f. City: Sacramento
P2g. Zip: 95814
P2h. UTM: Zone: mE/ mN (G.P.S.)
*P2i. Other Locational Data: Assessor’s Parcel Number (Map, Block, Lot): 00601010070000

P3a. Description: (Describe resource and its major elements. Include design, materials, condition, alterations, size, setting, and boundaries.)

The building at 910 J Street is located on the south side of J Street, between 9th and 10th streets, and contains one hollow sidewalk segment. The 910 J Street hollow sidewalk segment is not currently utilized. It parallels J Street and features a brick building wall that supports the 910 J Street building on the south, and butressed brick street retaining walls on the north. The building wall features three door openings surmounted by concrete lintels; only the easternmost door has not been infilled, however. The hollow sidewalk segment is enclosed at its east and west ends by brick walls, features a concrete floor, and is capped by a ceiling reinforced with steel I-beams supported by transverse beams and metal posts.

P3b. Resource Attributes: (list attributes and codes)
HP39. Other

P4. Resources Present:
☐ Building ☑ Structure ☐ Object ☐ Site ☐ District ☐ Element of District ☐ Other

P5b. Photo: (view and date)
Brick building wall with door openings, looking south
02/2009

P6. Date Constructed/Age and Sources:
1868
Historic
HEC, 2009.

P7. Owner and Address:
Kenny/Kathleen Wong
Living Trust
5421 Pleasant Drive,
Sacramento, CA 95822

P8. Recorded by:
Page & Turnbull, Inc. (MEG)
2401 C Street, Ste. B
Sacramento, CA 95816

P9. Date Recorded:
05/16/2009

P10. Survey Type:
Reconnaissance

P11. Report Citation: (Cite survey report and other sources, or enter “none”)
Raised Streets and Hollow Sidewalks Survey Report
Raised Streets and Hollow Sidewalks Survey Report

Attachments:
☐ None ☑ Location Map ☑ Sketch Map ☑ Continuation Sheet ☐ Building, Structure, and Object Record
☐ Archaeological Record ☐ District Record ☐ Linear Feature Record ☐ Milling Station Record ☐ Rock Art Record
☐ Artifact Record ☐ Photograph Record ☐ Other (list)
DPR 523A (L/95)
*Required information
<table>
<thead>
<tr>
<th>Page</th>
<th>2 of 2</th>
<th>Resource Name or # (Assigned by recorder)</th>
<th>910 J Street, Hollow Sidewalk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recorded by:</td>
<td>Page & Turnbull</td>
<td>Date</td>
<td>05/16/2009</td>
</tr>
</tbody>
</table>

- **Street retaining wall, looking northwest (Page & Turnbull, 02/2009)**
- **Brick end wall, looking west (Page & Turnbull, 02/2009)**
P1. Other Identifier:

*P2. Location: [] Not for Publication [] Unrestricted
and (P2b and P2c or P2d. Attach a Location Map as necessary.)

* a. County: Sacramento

*c. Address: 918 J Street, Sacramento
City: Sacramento
Zip: 95814

d. UTM: Zone: ____________ mE/ ____________ mN (G.P.S.)
e. Other Locational Data: Assessor's Parcel Number (Map, Block, Lot): 00601010100000

*P3a. Description: (Describe resource and its major elements. Include design, materials, condition, alterations, size, setting, and boundaries.)
The building at 918 J Street is located on the south side of J Street, between 9th and 10th streets, and features one hollow sidewalk segment. The 918 J Street hollow sidewalk segment is not currently utilized. The hollow sidewalk segment parallels J Street and features a brick building wall that supports the 918 J Street building on the south, and a butressed brick street retaining wall on the north. The building wall contains a door opening with a wood frame and threshold, and two window openings which appear to have been created by infilling the lower half of former door openings with brick. The window openings include wood frames and sills. The hollow sidewalk segment is enclosed at its east and west ends by brick end walls, features a concrete floor, and is capped by a concrete slab ceiling that is supported by heavy timber posts and beams.

*P3b. Resource Attributes: (list attributes and codes) HP39. Other

*P4. Resources Present: [] Building [x] Structure [] Object [] Site [] District [] Element of District [] Other

P5b. Photo: (view and date)
Brick building wall with partially infilled opening, looking south
02/2009

*P6. Date Constructed/Age and Sources: [x] Historic
1868
HEC, 2009.

*P7. Owner and Address:
City Centre Properties
Revocable Trust
P.O. Box 15453
Sacramento, CA

*P8. Recorded by:
Page & Turnbull, Inc. (MEG)
2401 C Street, Ste. B
Sacramento, CA 95816

*P9. Date Recorded:
05/16/2009

P10. Survey Type:
Reconnaissance

*P11. Report Citation: (Cite survey report and other sources, or enter “none”) Raised Streets and Hollow Sidewalks Survey Report

*Attachments: [] None [] Location Map [] Sketch Map [x] Continuation Sheet [] Building, Structure, and Object Record
[] Archaeological Record [] District Record [] Linear Feature Record [] Milling Station Record [] Rock Art Record
[] Artifact Record [] Photograph Record [] Other (list)
DPR 523A (1/95)
Street retaining wall and timber supports, looking northeast (Page & Turnbull, 05/2009)

Detail of window opening and timber supports, looking south (Page & Turnbull, 05/2009)
The building at 1000 J Street is located on the southeast corner of the intersection of 10th and J streets and contains two segments of hollow sidewalks. The northern sidewalk segment, paralleling J Street, currently functions as a storage space. This segment features a wall clad with drywall that support the 1000 J Street building on the south and a butressed brick street retaining wall on the north. The northern hollow sidewalk segment is enclosed at its east end by a plywood partition. The western hollow sidewalk segment parallels 10th Street. A wall clad in drywall supports the 1000 J Street building on the east side of the sidewalk and a butressed brick street retaining wall supports the sidewalk on the west. The south end of the segment terminates in a brick wall. A hole in this brick partition reveals that the hollow sidewalk along 10th Street continues to the J/K Alley. Both hollow sidewalk segments feature concrete flooring and a concrete slab ceiling. The hollow sidewalk is accessed by an elevator on 10th Street and includes a starred manhole cover near the intersection of 10th Street and the J/K Alley.

P3b. Resource Attributes: (list attributes and codes)

P4. Resources Present:
- Building
- Structure
- Object
- Site
- District
- Element of District
- Other

P5b. Photo: (view and date)

Western segment, street retaining wall, looking south

02/2009

P6. Date Constructed/Age and Sources:

Historic

ca. 1870

P7. Owner and Address:

Abukhaidar Ismail

1301 Sierra Oaks Court

Newcastle, CA 95658

P8. Recorded by:

Page & Turnbull, Inc. (MEG)

2401 C Street, Ste. B

Sacramento, CA 95816

P9. Date Recorded:

05/18/2009

P10. Survey Type:

Reconnaissance

P11. Report Citation:

(Cite survey report and other sources, or enter “none”) Raised Streets and Hollow Sidewalks Survey Report

Attachments:
- None
- Location Map
- Sketch Map
- Continuation Sheet
- Building, Structure, and Object Record
- Archaeological Record
- District Record
- Linear Feature Record
- Milling Station Record
- Rock Art Record
- Artifact Record
- Photograph Record
- Other (list)

DPR 523A (1/95)

*Required information
<table>
<thead>
<tr>
<th>Recorded by:</th>
<th>Page & Turnbull</th>
<th>Date</th>
<th>05/18/2009</th>
<th>Continuation</th>
<th>Update</th>
</tr>
</thead>
</table>

Western hollow sidewalk segment looking south through hole in end wall toward J/K Alley (Page & Turnbull, 05/2009)

Elevator, 10th Street (Page & Turnbull, 05/2009)
P1. Other Identifier:

P2. Location:
- Not for Publication
- Unrestricted
- County: Sacramento

P3a. Description: (Describe resource and its major elements. Include design, materials, condition, alterations, size, setting, and boundaries.)

The building at 1012 J Street is located on the south side of J Street, between 10th and 11th streets, and features one hollow sidewalk segment that parallels J Street. The hollow sidewalk segment currently functions as a storage area. It features brick piers with corbelled bases and brackets that support the 1012 J Street building on the south, and buttressed brick street retaining walls clad in stucco on the north. The hollow sidewalk segment is enclosed at its east and west ends by stucco-clad brick end walls. The hollow sidewalk segment features concrete flooring and concrete slab ceiling. An elevator accesses the hollow sidewalk segment from street level.

P3b. Resource Attributes: (list attributes and codes)
HP39. Other

P4. Resources Present:

- Building
- Structure
- Object
- Site
- District
- Element of District
- Other

P5b. Photo: (view and date)

1012 J Street hollow sidewalk, looking east
03/2009

P6. Date Constructed/Age and Sources:

- Historic
- ca. 1870

P7. Owner and Address:

- Patino Lorenzo E/Nelly
- 928 Stern Circle
- Sacramento, CA 95822

P8. Recorded by:

- Page & Turnbull, Inc. (MEG)
- 2401 C Street, Ste. B
- Sacramento, CA 95816

P9. Date Recorded:

05/19/2009

P10. Survey Type:

Reconnaissance

P11. Report Citation: (Cite survey report and other sources, or enter “none”)
Raised Streets and Hollow Sidewalks Survey Report

Attachments:

- None
- Location Map
- Sketch Map
- Continuation Sheet
- Building, Structure, and Object Record
- Archaeological Record
- District Record
- Linear Feature Record
- Milling Station Record
- Rock Art Record
- Artifact Record
- Photograph Record
- Other (list)

DPR 523A (1/95)
Detail of a corbelled bracket on one of the brick piers that supports the building wall. (Page & Turnbull, 04/2009)

Elevator access to J Street (Page & Turnbull, 04/2009)
P1. Other Identifier:

*P2. Location: [] Not for Publication [X] Unrestricted

and (P2b and P2c or P2d. Attach a Location Map as necessary.)

- **a. County:** Sacramento
- **b. USGS 7.5' Quad:** Sacramento East
- **c. Address:**
 - 1208 J Street
 - Sacramento City: Sacramento
 - Zip: 95814
- **d. UTM:** Zone:
 - mE/
 - mN (G.P.S.)
- **e. Other Locational Data:**
 - Assessor’s Parcel Number (Map, Block, Lot): 0060110030000

P3a. Description: (Describe resource and its major elements. Include design, materials, condition, alterations, size, setting, and boundaries.)

The building at 1208 J Street is located on the south side of J Street, between 12th and 13th streets, and contains one hollow sidewalk segment. The 1208 J Street hollow sidewalk segment currently functions as a storage area. The hollow sidewalk segment parallels J Street and features concrete piers that support the 1208 J Street building on the south, and poured concrete street retaining walls on the north. The hollow sidewalk segment is enclosed at its east and west ends by concrete walls. The hollow sidewalk segment features a concrete floor and a concrete slab ceiling. An elevator originally provided access to the hollow sidewalk space from the street level, but has been removed.

P3b. Resource Attributes: (list attributes and codes)

- HP39. Other

P4. Resources Present:

- Building
- Structure
- Object
- Site
- District
- Element of District
- Other

P5b. Photo: (view and date)

- Concrete piers supporting building, looking southeast
 - 03/2009

P6. Date Constructed/Age and Sources:

- Historic
 - ca. 1870

P7. Owner and Address:

- George L/Bonnie L Procida
 - 1208 J Street
 - Sacramento, CA 95814

P8. Recorded by:

- Page & Turnbull, Inc. (MEG)
 - 2401 C Street, Ste. B
 - Sacramento, CA 95816

P9. Date Recorded:

- 05/20/2009

P10. Survey Type:

- Reconnaissance

P11. Report Citation: (Cite survey report and other sources, or enter “none”)

- Raised Streets and Hollow Sidewalks Survey Report

Attachments:

- Building, Structure, and Object Record
- Archaeological Record
- District Record
- Linear Feature Record
- Milling Station Record
- Rock Art Record
- Artifact Record
- Photograph Record
- Other (list)

DPR 523A (L/95)

*Required information
Concrete street retaining wall, looking north (Page & Turnbull, 04/2009)

Exterior sidewalk surface above hollow sidewalk, looking east. Concrete patch indicating infilled elevator hatch visible at left. (Page & Turnbull, 04/2009)
*Resource name(s) or number (assigned by recorder) 111-113 K Street, Hollow Sidewalk

P1. Other Identifier:

- **P2.** Location: [] Not for Publication [x] Unrestricted
 - a. County: Sacramento
 - b. USGS 7.5' Quad: Sacramento West
 - c. Address: 111-113 K Street, Sacramento
 - d. UTM: Zone: mE/ mN (G.P.S.)
 - e. Other Locational Data: Assessor's Parcel Number (Map, Block, Lot): 00600710560000

P3a. Description: (Describe resource and its major elements. Include design, materials, condition, alterations, size, setting, and boundaries.)

Two buildings, one at 111-113 and the other at 115-119 K Street, stand on this parcel. The building at 111-113 K Street is located on the north side of K Streets, between Front and 2nd streets, and contains one hollow sidewalk segment. The 111-113 K Street hollow sidewalk segment parallels K Street and currently functions as a storage area. Brick walls, containing small metal frame vents in arched window openings infilled with brick, support the 111-113 K Street building on the north. Brick buttressed street retaining walls support the sidewalk on the south. The hollow sidewalk segment terminates in brick walls at its east and west ends. The hollow sidewalk segment features concrete flooring and a concrete slab ceiling.

P3b. Resource Attributes: (list attributes and codes) HP39. Other

P4. Resources Present: [] Building [x] Structure [] Object [] Site [] District [] Element of District [] Other

P5b. Photo: (view and date)

Hollow sidewalk, looking southwest

03/2009

P6. Date Constructed/Age and Sources:

Historic

1865

HEC, 2009.

P7. Owner and Address:

Corcos Family Trust

4780 Lakeside Way

Fair Oaks, CA 95628

P8. Recorded by:

Page & Turnbull, Inc. (MEG)

2401 C Street, Ste. B

Sacramento, CA 95816

P9. Date Recorded:

05/25/2009

P10. Survey Type:

Reconnaissance

P11. Report Citation: (Cite survey report and other sources, or enter “none”) Raised Streets and Hollow Sidewalks Survey Report

Attachments: [] None [] Location Map [] Sketch Map [x] Continuation Sheet [] Building, Structure, and Object Record

[] Archaeological Record [] District Record [] Linear Feature Record [] Milling Station Record [] Rock Art Record

[] Artifact Record [] Photograph Record [] Other (list)

DPR 523A (1/95) *Required information*
Brick building wall below 111-113 K Street, showing infilled window openings with metal vents, looking northeast (Page & Turnbull, 04/2009)

Inside the basement, rectangular window opening in the wall supporting 111-113 K Street, looking south (Page & Turnbull, 04/2009)
State of California — The Resources Agency
DEPARTMENT OF PARKS AND RECREATION
PRIMARY RECORD

Other Listings
Review Code__ Reviewer__ Date__

Page 1 of 2

Resource name(s) or number(assigned by recorder) 115-119 K Street, Hollow Sidewalk

P1. Other Identifier:

*P2. Location:
[] Not for Publication [x] Unrestricted

[a. County: Sacramento

and (P2b and P2c or P2d. Attach a Location Map as necessary.)

*b. USGS 7.5' Quad: Sacramento West

c. Address: 115-119 K Street, Sacramento

d. City: Sacramento

e. Zip: 95814

d. UTM: Zone: __________ mE/ __________ mN (G.P.S.)

*P3a. Description: (Describe resource and its major elements. Include design, materials, condition, alterations, size, setting, and boundaries.)

Two buildings, one at 111-113 and the other at 115-119 K Street, stand on the parcel. The building at 115-119 K Street is located on the north side of K Street, between Front and 2nd streets, and features one hollow sidewalk segment. The 115-119 K Street hollow sidewalk segment currently functions as a storage area and workshop. This hollow sidewalk segment parallels K Street and features concrete frame brick walls that support the 115-119 K Street building on the north. On the south and east, buttressed brick street retaining walls parallel K Street and Firehouse Alley, respectively. The brick building walls below 115-119 K Street feature brick infilled arched window and door openings. The hollow sidewalk segment is enclosed at its west end by a brick wall. The hollow sidewalk segment features a concrete floor and a concrete slab ceiling that is supported at intervals by poured concrete columns.

*P3b. Resource Attributes: (list attributes and codes) HP39. Other

*P4. Resources Present:
[] Building [x] Structure [] Object [] Site [] District [] Element of District [] Other

P5b. Photo: (view and date)

Brick building wall below 121 K Street, looking north

04/2009

*P6. Date Constructed/Age and Sources:
[] Historic

1865

HEC, 2009.

*P7. Owner and Address:

Harris-Winkle Building Ltd.

2819 Crow Canyon Road 200

San Ramon, CA 94583

*P8. Recorded by:

Page & Turnbull, Inc. (MEG)

2401 C Street, Ste. B

Sacramento, CA 95816

*P9. Date Recorded:

05/26/2009

*P10. Survey Type:

Reconnaissance

*P11. Report Citation: (Cite survey report and other sources, or enter "none") Raised Streets and Hollow Sidewalks Survey Report

*Attachments:
[] None [] Location Map [] Sketch Map [x] Continuation Sheet [] Building, Structure, and Object Record

[] Archaeological Record [] Distinct Record [] Linear Feature Record [] Milling Station Record [] Rock Art Record

[] Artifact Record [] Photograph Record [] Other (list)

DPR 523A (1/95)

*Required information
Brick buttressed street retaining walls, looking east (Page & Turnbull, 04/2009)

Brick buttressed street retaining walls, looking south (Page & Turnbull, 04/2009)
State of California — The Resources Agency

DEPARTMENT OF PARKS AND RECREATION

PRIMARY RECORD

Other Listings

Review Code

Reviewer

Date

P1. Other Identifier:

Resource name(s) or number (assigned by recorder)

116 K Street, Hollow Sidewalk

P2. Location:

- Not for Publication
- Unrestricted

- County: Sacramento

- USGS 7.5' Quad: Sacramento West

- Date: 1998

- Address: 116 K Street, Sacramento

- City: Sacramento

- Zip: 95814

- UTM: Zone: mE/mN (G.P.S.)

- Other Locational Data: Assessor’s Parcel Number: 00600720480000

P3a. Description:

The lot at 116 K Street is located on the southeast corner of the intersection of K Street and Firehouse Alley and features two hollow sidewalk segments in an L-shaped configuration that wraps the street corner. The western leg of the 116 K Street hollow sidewalk segment parallels Firehouse Alley and the northern leg parallels K Street. The hollow sidewalk segments border a parking lot. The hollow sidewalk is open to the exterior on the south and east sides and concrete columns support the overhanging concrete sidewalk that creates the ceiling of the hollow sidewalk segment. Brick buttressed street retaining walls support the west and north edges of the sidewalk. The hollow sidewalk segment terminates in a poured concrete wall at the south end of the western leg, and a concrete block wall at the east end of the northern leg. The hollow sidewalk segment features concrete flooring and a concrete slab ceiling.

P3b. Resource Attributes:

- (list attributes and codes)

- HP39. Other

P4. Resources Present:

- Building
- Structure
- Object
- Site
- District
- Element of District
- Other

P5b. Photo:

Northern leg of the hollow sidewalk segment, looking northeast

04/2009

P6. Date Constructed/Age and Sources:

- Historic

1865

HEC, 2009.

P7. Owner and Address:

Redevelopment Agency

City of Sacramento

630 I Street

Sacramento, CA 95814

P8. Recorded by:

Page & Turnbull, Inc. (MEG)

2401 C Street, Ste. B

Sacramento, CA 95816

P9. Date Recorded:

05/25/2009

P10. Survey Type:

Reconnaissance

P11. Report Citation:

(Cite survey report and other sources, or enter “none”)

Raised Streets and Hollow Sidewalks Survey Report

Attachments:

- None
- Location Map
- Sketch Map
- Continuation Sheet
- Building, Structure, and Object Record
- Archaeological Record
- District Record
- Linear Feature Record
- Milling Station Record
- Rock Art Record
- Artifact Record
- Photograph Record
- Other (list)

DPR 523A (1/95)

*Required information
Western leg of the hollow sidewalk segment, looking north (Page & Turnbull, 04/2009)
The building at 126 K Street is located on the south side of K Street, between Front and 2nd streets, and contains one hollow sidewalk segment. The 126 K Street hollow sidewalk segment parallels K Street and currently functions as a storage area. The hollow sidewalk segment is supported by concrete block walls on both the north (street retaining wall) and south (building wall). A flush metal door leads from the basement of 126 K Street into the hollow sidewalk segment. The hollow sidewalk segment terminates in walls clad in drywall at its east and west ends. The hollow sidewalk segment features a carpeted, concrete floor and a drywalled ceiling.
Hollow sidewalk segment, looking north (Page & Turnbull, 02/2009)

Hollow sidewalk segment, looking south at the building wall and showing door into building basement. (Page & Turnbull, 02/2009)
State of California — The Resources Agency
DEPARTMENT OF PARKS AND RECREATION
PRIMARY RECORD

<table>
<thead>
<tr>
<th>Resource name(s) or number (assigned by recorder)</th>
<th>704 K Street, Hollow Sidewalk</th>
</tr>
</thead>
</table>

P1. Other Identifier:
- **Location:** Not for Publication
 - Unrestricted
 - Sacramento

P2. Location:
- **County:** Sacramento
- **Address:** 704 K Street, Sacramento
- **City:** Sacramento
- **Zip:** 95814
- **Date:** 1998

P3a. Description:
The building at 704 K Street is located on the southeast corner of the intersection of 7th and K Streets and contains two hollow sidewalks segments. The 704 K Street hollow sidewalk segments were finished to serve as storage for a retail shop, but are not currently utilized. The western hollow sidewalk segment parallels 7th Street and features poured concrete street retaining walls on the west and concrete piers that support the 704 K Street building on the east. This hollow sidewalk segment is enclosed on its north and south ends by poured concrete walls. The northern hollow sidewalk segment parallels K Street. Brick street retaining walls are located along the north side of the segment and the building wall, which is finished with wood paneling, is located on its south side. The east and west ends of the segment terminate in brick walls. Both hollow sidewalk segments feature concrete floors and concrete slab ceilings.

P3b. Resource Attributes:
- HP39. Other

P4. Resources Present:
- Building
- Structure
- Object
- Site
- District
- Element of District
- Other

P5b. Photo:
- Western segment, looking east
 - (?) through building wall
 - 02/2009

P6. Date Constructed/Age and Sources:
- 1868
 - Historic
 - HEC, 2009.

P7. Owner and Address:
- Redevelopment Agency
- City of Sacramento
- 630 I Street
- Sacramento, CA 95814

P8. Recorded by:
- Page & Turnbull, Inc. (MEG)
- 2401 C Street, Ste. B
- Sacramento, CA 95816

P9. Date Recorded:
- 05/25/2009

P10. Survey Type:
- Reconnaissance

P11. Report Citation:
- Raised Streets and Hollow Sidewalks Survey Report

Attachments:
- None
- Location Map
- Sketch Map
- Continuation Sheet
- Building, Structure, and Object Record
- Archaeological Record
- District Record
- Linear Feature Record
- Milling Station Record
- Rock Art Record
- Artifact Record
- Photograph Record
- Other (list)

DPR 523A (1/95)

Required information
Western segment, poured concrete street retaining walls on the west and north, looking west (Page & Turnbull, 02/2009)

North segment, brick street retaining wall looking north (Page & Turnbull, 02/2009)
The building at 708 K Street is located on the south side of K Street, between 7th and 8th streets, and features one hollow sidewalk segment. The 708 K Street hollow sidewalk segment parallels K Street and currently houses electrical equipment. Brick building walls support the 708 K Street building on the south and brick buttressed street retaining walls support the sidewalk on the north. Door openings are located in the brick building wall. The hollow sidewalk segment terminates in a concrete block wall on the east and a brick wall on the west. Electrical equipment is located on the west end wall. The hollow sidewalk segment features a concrete floor and a concrete slab ceiling that is supported at intervals by poured concrete columns.

P3b. Resource Attributes: (list attributes and codes)
HP39. Other

P4. Resources Present:
- Building
- Structure
- Object
- Site
- District
- Element of District
- Other

P5b. Photo: (view and date)
Hollow sidewalk, street retaining wall & end wall looking northeast
02/2009

P6. Date Constructed/Age and Sources:
1868
Historic
HEC, 2009.

P7. Owner and Address:
Redevelopment Agency
City of Sacramento
630 I Street
Sacramento, CA 95814

P8. Recorded by:
Page & Turnbull, Inc. (MEG)
2401 C Street, Ste. B
Sacramento, CA 95816

P9. Date Recorded:
05/25/2009

P10. Survey Type:
Reconnaissance

P11. Report Citation: (Cite survey report and other sources, or enter “none”)
Raised Streets and Hollow Sidewalks Survey Report

Attachments:
- None
- Location Map
- Sketch Map
- Continuation Sheet
- Building, Structure, and Object Record
- Archaeological Record
- District Record
- Linear Feature Record
- Milling Station Record
- Rock Art Record
- Artifact Record
- Photograph Record
- Other (list)

*DPR 523A (1/95)
*Required information
<table>
<thead>
<tr>
<th>Resource Name or # (Assigned by recorder)</th>
<th>708 K Street, Hollow Sidewalk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recorded by:</td>
<td>Page & Turnbull</td>
</tr>
<tr>
<td>Date</td>
<td>05/25/2009</td>
</tr>
<tr>
<td>Continuation</td>
<td>X</td>
</tr>
<tr>
<td>Update</td>
<td></td>
</tr>
</tbody>
</table>

Brick building wall below 708 K Street, looking southwest, showing door openings and concrete columns supporting the ceiling. (Page & Turnbull, 02/2009)

Looking west at electrical equipment located on west end wall (Page & Turnbull, 02/2009)
The building at 718 K Street is located on the south side of K Street, between 7th and 8th streets, and contains one hollow sidewalk segment. The 718 K Street hollow sidewalk segment parallels K Street and currently houses electrical equipment. Hollow clay tile building walls support the 718 K Street building on the south and concrete block street retaining walls which stand on a concrete foundation support the sidewalk on the north. The building wall is pierced by door openings with flush metal doors. The hollow sidewalk segment terminates in poured concrete walls at its east and west ends. The hollow sidewalk segment features a concrete floor and a concrete slab ceiling.

P3a. Description: (Describe resource and its major elements. Include design, materials, condition, alterations, size, setting, and boundaries.)

The building at 718 K Street is located on the south side of K Street, between 7th and 8th streets, and contains one hollow sidewalk segment. The 718 K Street hollow sidewalk segment parallels K Street and currently houses electrical equipment. Hollow clay tile building walls support the 718 K Street building on the south and concrete block street retaining walls which stand on a concrete foundation support the sidewalk on the north. The building wall is pierced by door openings with flush metal doors. The hollow sidewalk segment terminates in poured concrete walls at its east and west ends. The hollow sidewalk segment features a concrete floor and a concrete slab ceiling.

P3b. Resource Attributes: (list attributes and codes) HP39. Other

P4. Resources Present: □ Building □ Structure □ Object □ Site □ District □ Element of District □ Other

P5b. Photo: (view and date)

Hollow sidewalk, looking north and up at the concrete capping

02/2009

P6. Date Constructed/Age and Sources: □ Historic

1868

HEC, 2009.

P7. Owner and Address:

718 K Street, LLC

1025 9th Street, 205

Sacramento, CA 95814

P8. Recorded by:

Page & Turnbull, Inc. (MEG)

2401 C Street, Ste. B

Sacramento, CA 95816

P9. Date Recorded:

05/25/2009

P10. Survey Type:

Reconnaissance

P11. Report Citation: (Cite survey report and other sources, or enter “none”)

Raised Streets and Hollow Sidewalks Survey Report

Attachments: □ None □ Location Map □ Sketch Map □ Continuation Sheet □ Building, Structure, and Object Record

□ Archaeological Record □ District Record □ Linear Feature Record □ Milling Station Record □ Rock Art Record

□ Artifact Record □ Photograph Record □ Other (list)

DPR 523A (1/95)

*Required information
Electrical equipment along concrete block wall, looking north (Page & Turnbull, 02/2009)

Looking north through hollow clay tile building wall below 718 K Street into hollow sidewalk space (Page & Turnbull, 02/2009)
State of California — The Resources Agency
DEPARTMENT OF PARKS AND RECREATION
PRIMARY RECORD

<table>
<thead>
<tr>
<th>Other Listings</th>
<th>Review Code</th>
<th>Reviewer</th>
<th>Date</th>
</tr>
</thead>
</table>

P1. Other Identifier:

- ***Resource name(s) or number (assigned by recorder):** 724 K Street, Hollow Sidewalk

P2. Location:

- **Not for Publication** ☑Unrestricted
- **a. County:** Sacramento
- **b. USGS 7.5’ Quad:** Sacramento East
 Date: 1998
- **c. Address:** 724 K Street, Sacramento
 City: Sacramento
 Zip: 95814
- **d. UTM:** Zone: mE/mN (G.P.S.)
- **e. Other Locational Data:** Assessor’s Parcel Number (Map, Block, Lot): 006096008000

P3a. Description: (Describe resource and its major elements. Include design, materials, condition, alterations, size, setting, and boundaries.)

The building at 724 K Street is located on the southwest corner of K Street and 8th Street and features two segments of hollow sidewalks. The 724 K Street hollow sidewalk segments are not currently utilized. The eastern hollow sidewalk segment parallels 8th Street and features poured concrete building walls that support the 724 K Street building on the west, and buttressed brick street retaining walls on the east. This hollow sidewalk segment is enclosed at its north end by a poured concrete wall and at its south end by a brick wall. The northern hollow sidewalk segment parallels K Street. A brick building wall supports the 724 K Street building on the south, and the concrete block wall street retaining wall stands approximately 6 inches north of the brick building wall, creating a narrow cavity that is accessed by door openings with wood panel doors. Some small openings and corbelling are visible on the brick building wall within the cavity. The west end of the northern hollow sidewalk segment terminates in a brick wall and the east end is enclosed by plywood. Both hollow sidewalk segments feature concrete floors and a concrete slab ceiling lined with metal rebar.

P3b. Resource Attributes: (list attributes and codes)
HP39. Other

P4. Resources Present: ☑Building ☑Structure ☐Object ☐Site ☐District ☐Element of District ☐Other

P5b. Photo: (view and date)
Eastern hollow sidewalk segment, looking southeast
02/2009

P6. Date Constructed/Age and Sources: ☑Historic
1868
HEC, 2009.

P7. Owner and Address:

Mohammed H Mohanna
630 I Street
Sacramento, CA 95814

P8. Recorded by:

Page & Turnbull, Inc. (MEG)
2401 C Street, Ste. B
Sacramento, CA 95816

P9. Date Recorded:
05/25/2009

P10. Survey Type:

- **Reconnaissance**

P11. Report Citation: (Cite survey report and other sources, or enter “none”)
Raised Streets and Hollow Sidewalks Survey Report

Attachments:
- ☐None
- ☑Location Map
- ☑Sketch Map
- ☑Continuation Sheet
- ☑Building, Structure, and Object Record
- ☑Archaeological Record
- ☑District Record
- ☑Linear Feature Record
- ☑Milling Station Record
- ☑Rock Art Record
- ☑Artifact Record
- ☑Photograph Record
- ☐Other (list)

DPR 523A (1/95)
*Required information
<table>
<thead>
<tr>
<th>Resource Name or # *(Assigned by recorder)</th>
<th>Page & Turnbull *Date 05/25/2009</th>
<th>Northern segment, concrete block wall visible through door opening in brick building wall below 724 K Street (Page & Turnbull, 02/2009)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cavity between concrete block street retaining wall and brick building wall within northern sidewalk segment, looking southwest and up *(Page & Turnbull, 02/2009)</td>
<td></td>
<td>Cavity between concrete block street retaining wall and brick building wall within northern sidewalk segment, looking southwest and up (Page & Turnbull, 02/2009)</td>
</tr>
</tbody>
</table>
The building at 726 K Street is located on the south side of K Street, between 7th and 8th streets, and features one hollow sidewalk segment. The 726 K Street hollow sidewalk segment parallels K Street and is not currently utilized. Brick building walls support the 726 K Street building on the south; the south side of this wall is visible from within the building's basement, but because a second, concrete block wall parallels the brick wall on its north side, it is not readily visible from within the hollow sidewalk. Plywood covers what appear to be openings in the brick building wall. On the north, the hollow sidewalk segment is supported by brick buttressed street retaining walls. The hollow sidewalk segment terminates in poured concrete walls at its east and west ends. The hollow sidewalk segment features a concrete floor and a steel reinforced concrete slab ceiling.
Brick building wall below 726 K Street and concrete block support wall, looking south (Page & Turnbull, 02/2009)

Elevator hatch, looking north and up (Page & Turnbull, 02/2009)
P2. Location: ☐ Not for Publication ☑ Unrestricted

* **a. County:** Sacramento

and (P2b and P2c or P2d. Attach a Location Map as necessary.)

* **b. USGS 7.5' Quad:** Sacramento East

c. Address: 730 K Street, Sacramento

City: Sacramento

Zip: 95814

* **d. UTM: Zone:** mE/mN (G.P.S.)

* **e. Other Locational Data:** Assessor’s Parcel Number (Map, Block, Lot): 00600960100000

P3a. Description: (Describe resource and its major elements. Include design, materials, condition, alterations, size, setting, and boundaries.)

The building at 730 K Street is located on the southwest corner of the intersection of 8th and K streets and contains two segments of hollow sidewalks; only the eastern hollow sidewalk segment was accessible for survey, as the northern segment paralleling K Street has been sealed off. The eastern 730 K Street hollow sidewalk segment parallels 8th Street and is not currently utilized. Brick piers with corbelled bases and a brick building wall supports the 730 K Street building on the west side of the hollow sidewalk segment and poured concrete street retaining walls are located on the east. The brick building wall includes a door opening with a wood frame and threshold, and an arched window opening. The hollow sidewalk segment terminates in plywood partitions at its north and south ends. The hollow sidewalk segment features a concrete floor and a steel reinforced concrete slab ceiling.

P3b. Resource Attributes: (list attributes and codes)

P4. Resources Present: ☑ Building ☑ Structure ☑ Object ☑ Site ☑ District ☑ Element of District ☑ Other

P5b. Photo: (view and date)

Eastern hollow sidewalk segment, looking west at building wall

02/2009

P6. Date Constructed/Age and Sources: ☑ Historic

1868

HEC, 2009.

P7. Owner and Address:

Redevelopment Agency

City of Sacramento

630 I Street

Sacramento, CA 95814

P8. Recorded by:

Page & Turnbull, Inc. (MEG)

2401 C Street, Ste. B

Sacramento, CA 95816

P9. Date Recorded:

05/25/2009

P10. Survey Type:

Reconnaissance

P11. Report Citation: (Cite survey report and other sources, or enter “none”)

Raised Streets and Hollow Sidewalks Survey Report

Required information
CONTINUATION SHEET

<table>
<thead>
<tr>
<th>Resource Name or # (Assigned by recorder)</th>
<th>730 K Street, Hollow Sidewalk</th>
</tr>
</thead>
</table>

Recorded by: Page & Turnbull
Date: 05/25/2009
[Continuation] ☑
[Update] ☐

- **Eastern segment, brick building wall with arched window opening, looking west (Page & Turnbull, 02/2009)**

- **Eastern segment, plywood end partition, looking north (Page & Turnbull, 02/2009)**
The vacant lot at 801 K Street is located on the northeast corner of the intersection of 8th and K streets and contains two segments of hollow sidewalks; only the southern hollow sidewalk segment, paralleling K Street, was accessible for survey, as the western segment paralleling 8th Street is sealed off. The southern hollow sidewalk segment was converted to house bathrooms and storage spaces but is not currently utilized. Brick walls support the north edge of the hollow sidewalk, adjacent to the vacant lot, and poured concrete street retaining walls support the south edge of the hollow sidewalk. The brick walls include arched door openings. Poured concrete and wood frame partition walls divide the segment into distinct rooms. The hollow sidewalk segment terminates in brick walls at its east and west ends. The hollow sidewalk segment features a dirt floor and a concrete slab ceiling with sidewalk prism lights which allow light to enter the hollow sidewalk segment from above.

P3b. Resource Attributes: (list attributes and codes)
HP39. Other

P4. Resources Present:
[] Building [x] Structure [] Object [] Site [] District [] Element of District [] Other

P5b. Photo: (view and date)
Hollow sidewalk segment, looking southwest from vacant lot
02/2009

P6. Date Constructed/Age and Sources:
[] Historic
1868
HEC, 2009.

P7. Owner and Address:
Redevelopment Agency
City of Sacramento
630 I Street
Sacramento, CA 95814

P8. Recorded by:
Page & Turnbull, Inc. (MEG)
2401 C Street, Ste. B
Sacramento, CA 95816

P9. Date Recorded:
05/25/2009

P10. Survey Type:
Reconnaissance

P11. Report Citation: (Cite survey report and other sources, or enter “none”)
Raised Streets and Hollow Sidewalks Survey Report

Attachments:
[] None [] Location Map [] Sketch Map [x] Continuation Sheet [] Building, Structure, and Object Record
[] Archaeological Record [] District Record [] Linear Feature Record [] Milling Station Record [] Rock Art Record
[] Artifact Record [] Photograph Record [] Other (list)

DPR 523A (1/95)
Required information
<table>
<thead>
<tr>
<th>Resource Name or # (Assigned by recorder)</th>
<th>801 K Street, Hollow Sidewalk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recorded by:</td>
<td>Page & Turnbull</td>
</tr>
<tr>
<td>Date</td>
<td>05/25/2009</td>
</tr>
<tr>
<td>Continuation</td>
<td>✔</td>
</tr>
<tr>
<td>Update</td>
<td>☐</td>
</tr>
</tbody>
</table>

Southern segment, sidewalk prism lights, looking south and up (Page & Turnbull, 02/2009)

Southern segment, brick end wall, looking west (Page & Turnbull, 02/2009)
The building at 831 K Street is located on the northwest corner of the intersection of 8th and K Streets and contains two segments of hollow sidewalks. The 831 K Street hollow sidewalk segments are not currently utilized. The southern hollow sidewalk segment parallels K Street and features brick piers and hollow clay tile building walls that support the 831 K Street building on the north, and buttressed brick street retaining walls on the south. This hollow sidewalk segment is enclosed at its west end by a brick wall and on its east end by brick buttressed retaining wall. The segment features a concrete slab ceiling. The eastern hollow sidewalk segment parallels 8th Street. Granite capped brick piers and hollow clay tile building walls support the 831 K Street building on the west side of the sidewalk, and a buttressed brick street retaining wall supports the sidewalk on the west. The south end of the segment terminates in a brick buttressed retaining wall and the north end is enclosed by brick wall. The segment features a brick barrel vaulted ceiling. Both hollow sidewalk segments feature concrete floors. The hollow sidewalk features infilled prism lights and an elevator hatch that provides access from street level, At street level, a granite curb is located at the corner of 8th Street and the J/K Alley.
Eastern segment, looking north (Page & Turnbull, 05/2009)

Eastern segment, detail of the brick barrel vaulted ceiling (Page & Turnbull, 05/2009)
1011-1013 K Street, Hollow Sidewalk

P2. Location: □ Not for Publication ✔ Unrestricted

and (P2b and P2c or P2d. Attach a Location Map as necessary.)

* a. County: Sacramento

* b. USGS 7.5’ Quad: Sacramento East

date: 1998

* c. Address: 1101-1013 K Street, Sacramento

City: Sacramento Zip: 95814

d. UTM: Zone: mE/ mN (G.P.S.)

* e. Other Locational Data: Assessor’s Parcel Number (Map, Block, Lot): 0060103011000

P3a. Description: (Describe resource and its major elements. Include design, materials, condition, alterations, size, setting, and boundaries.)

The building at 1011-1013 K Street is located on the north side of K Street, between 10th and 11th streets, and contains one partitioned segment of hollow sidewalks, which parallels K Street. The hollow sidewalk segments below 1011-1013 K Street are not utilized. The western segment features a poured concrete wall that supports the 1011-1013 K Street building on the north and a brick and concrete butressed street retaining wall on the south. This hollow sidewalk segment is enclosed at its east and west ends by poured concrete end walls. Within the eastern segment, concrete piers support the 1011-1013 K Street building on the north and a brick buttressed street retaining wall supports the sidewalk on the south. The east and west ends of this segment terminate in brick end walls. Both hollow sidewalk segments feature concrete flooring and a concrete slab ceiling. An elevator accesses the western hollow sidewalk segment, but the elevator hatch has been infilled at the street level.

P3b. Resource Attributes: (list attributes and codes) HP39. Other

P4. Resources Present: ✔ Building ✔ Structure □ Object □ Site □ District □ Element of District □ Other

P5b. Photo: (view and date)

Eastern segment, concrete building wall, looking northwest

04/2009

P6. Date Constructed/Age and Sources: Historic

ca. 1870

P7. Owner and Address:

Charles Kennan McClatchy et al.

P.O. Box 13519

Arlington, TX

P8. Recorded by:

Page & Turnbull, Inc. (MEG)

2401 C Street, Ste. B

Sacramento, CA 95816

P9. Date Recorded:

05/21/2009

P10. Survey Type:

Reconnaissance

P11. Report Citation: (Cite survey report and other sources, or enter “none”) Raised Streets and Hollow Sidewalks Survey Report

Attachments: □ None □ Location Map □ Sketch Map □ Continuation Sheet □ Building, Structure, and Object Record □ Archaeological Record □ District Record □ Linear Feature Record □ Milling Station Record □ Rock Art Record □ Artifact Record □ Photograph Record □ Other (list)

DPR 523A (L/95)

*Required information
Eastern segment, looking southwest at buttressed brick street retaining wall. (Page & Turnbull, 04/2009)

Western segment, looking south at former elevator. (Page & Turnbull, 04/2009)
Between 1864 and 1876, the streets in the area bounded by Front Street on the west, I Street on the north, 13th Street on the east, and L Street on the south were raised in response to perpetual flooding. Historically the primary thoroughfares in downtown Sacramento, J and K streets are the highest raised streets. The raised streets are most visible where the Firehouse and J/K alleys dip to the original grade level. In Old Sacramento, the Firehouse Alley runs perpendicular to J and K Streets; downtown, the J/K Alley parallels J and K Streets. The points where the alleys dip are most pronounced at the west end of J and K streets and lessen as the streets approach 10th Street, where they are nearly flat. Within the downtown grid, Caesar Chevez Park is a natural high point; therefore the alley dips to the east and west of the slope down from the park. The I/J and K/L alleys dip to the original grade level near 8th and 9th streets. The raised streets are comprised of street retaining walls which were filled with rubble. The raised streets are paved with asphalt.
<table>
<thead>
<tr>
<th>*Required information</th>
</tr>
</thead>
<tbody>
<tr>
<td>State of California & The Resources Agency</td>
</tr>
<tr>
<td>DEPARTMENT OF PARKS AND RECREATION</td>
</tr>
<tr>
<td>CONTINUATION SHEET</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Page 2 of 2</th>
<th>*Resource Name or # (Assigned by recorder)</th>
<th>708 K Street, Hollow Sidewalk</th>
</tr>
</thead>
<tbody>
<tr>
<td>*Recorded by: Page & Turnbull</td>
<td>*Date 05/25/2009</td>
<td>✓ Continuation</td>
</tr>
</tbody>
</table>

Alley dip, J/K Alley between 8th and 7th streets, looking west (Page & Turnbull, 05/2009)

Looking west at Caesar Chevez Park from the entrance to the J/K Alley on 10th Street (Page & Turnbull, 05/2009)
District Name: Raised Streets and Hollow Sidewalks Historic District
D2. Common Name: Downtown Sacramento

D3. Detailed Description:

The Raised Streets and Hollow Sidewalks Historic District is located on the east side of the Sacramento River and includes portions of Old Sacramento and downtown Sacramento, which are physically divided by Interstate 5. Streets in the area are paved with asphalt. Sidewalks in Old Sacramento are comprised of concrete surfaced with wood planking. On the other side of I-5, sidewalks in downtown Sacramento are surfaced with concrete.

The Raised Streets and Hollow Sidewalks Historic District is bound on the west by Front Street, on the north by I Street, on the east by 13th Street, and on the south by L Street. The area roughly represents the area in which the City of Sacramento raised its streets by ten to fourteen feet between 1863 and 1879 in response to chronic flooding of the Sacramento and American rivers. The District centers on J and K streets which historically and currently are main thoroughfares through downtown Sacramento. (continued, p. 2)

D4. Boundary Description:

The raised streets are the framework for the Raised Streets and Hollow Sidewalks Historic District. The District boundary represents the area in which the raised streets are visible and the hollow sidewalk segments remain. The District is bounded by Front Street on the west, I street on the north, 13th Street on the east, and L Street on the south. (See Map on p. 8)

D5. Boundary Justification:

The boundary of the Raised Streets and Hollow Sidewalks Survey was based upon the map entitled, *Hollow Sidewalk Evaluation Study*, which was produced by structural engineer David Okaskai as part of the 1982 structural engineering report prepared by Barrish, Aldrich and Schroeter in which remaining raised streets and hollow sidewalks were studied. Maps depicting the streets raised as part of the 1863 and 1879 city project are conflicting; according to the 1982 Barrish, Aldrich and Schroeter report, 151 hollow sidewalk segments remained in Sacramento in 1982. Page & Turnbull’s architectural survey of the Raised Streets and Hollow Sidewalks was based on the boundary of the 1982 report. Verifying the extent of the raised area downtown was not part of the scope. While it is likely that the raised downtown extends beyond the boundaries of the project area, additional research is necessary to determine the outermost boundaries of the raised area.

D6. Significance:

<table>
<thead>
<tr>
<th>Theme</th>
<th>Engineering: Flood Control</th>
<th>Area</th>
<th>Downtown Sacramento, CA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Period of Significance</td>
<td>1863-1876</td>
<td>Applicable Criteria</td>
<td>N/A</td>
</tr>
</tbody>
</table>

(Discuss district’s importance in terms of its historical context as defined by theme, period of significance, and geographic scope. Also address the integrity of the district as a whole.)

National Register Criteria: The Raised Streets and Hollow Sidewalks Historic District is significant under National Register Criterion C (represents an important engineering feat in Sacramento). The District represents both an engineering feat and early measure of flood control. Flood control projects were pursued by the federal, state, and county governments; the City of Sacramento responded the chronic flooding of the Sacramento and American rivers by raising its downtown. (continued, p. X)

D7. References:

D8. Evaluator: Meg Glynn
Affiliation and Address: Page & Turnbull, Inc.
Date: July 2009
Address: 2401 C Street, Ste. B Sacramento, CA 95811
The District features a street grid with streets running east-west labeled with letters, and those running north-south labeled with numbers. City blocks in Old Sacramento are divided by alleys which run from north to south; downtown, city blocks are bisected by east-west alleys. The streets are roughly graded to the same elevation, but the alleys dip between the streets. The District includes three parks: the Old Sacramento State Historic Park, which is located between Front Street and Firehouse Alley and I and J streets; the Rosa Lima Park on the northeast corner of the intersection of 7th and K streets; and the City Plaza Park or Cesar Chavez Park which is located between 9th and 10th street and I and J streets.

Character-Defining Features

The Raised Streets and Hollow Sidewalks District is comprised of two main features: the raised streets, which are visible from grade and the hollow sidewalks, which are located below grade. The raised streets are the backbone of the district; they are the most visible feature of the district and it was the construction of the raised streets that resulted in the construction of the hollow sidewalks.

Raised Streets/Alley Dips

The raised streets are visible from the alleys downtown, which were not raised, but remained at the original grade level. In Old Sacramento, the raised streets are visible from the Firehouse Alley, which runs north-south through the city blocks; downtown, the J/K Alley, which runs east-west through the city blocks most clearly dips from the raised streets to the original grade. To a lesser extent, the I/J and K/L alleys also dip from the level of the elevated streets to Sacramento's original grade. The dip from the raised streets to the basement level of the buildings facilitated the delivery of goods and accommodated small stables and sheds. The combination of the raised streets and the new sewer system greatly improved drainage in the area. The alleys were of secondary importance; even if these lower points flooded, activity could continue on the raised streets in the city.

The raised streets, which are most visible from the alley dips, define the Raised Streets and Hollow Sidewalks Historic District; where the streets were raised, the buildings were raised, and hollow sidewalks were constructed. Therefore, the raised streets, which both define the project area boundaries and are the most visible from the street-level, are the most important feature of the District and represent its organizational system. The hollow sidewalks, their character-defining features, and the surface-level features of the streets and sidewalks are contributing features within the District.

Hollow Sidewalks: Character-Defining Features

The hollow sidewalks were comprised of six surfaces: the street retaining wall, the building wall, two end walls that partition the hollow sidewalk spaces, the ceiling, and the floor. Because of the utilitarian manner in which the sidewalks were constructed, the hollow sidewalk spaces contain few unique or distinguished characteristics; however, seven character-defining features were identified. Features include: the street retaining walls; brick piers and/or a brick wall below the building wall; thresholds, granite stairs, or other details; brick barrel vaults; end walls; water tanks; and, on the surface level, sidewalk lights, elevator doors, starred manhole covers, and/or granite curbs.

Street Retaining Walls

The street retaining walls are character-defining features because they reveal that the hollow sidewalks resulted from the raising of the streets—which was accomplished by pouring fill between retaining walls lining the street. The brick buttressed walls were typically thicker at the bottom and narrower at the top and buttresses supported the wall every four to six feet. To further strengthen the walls, some featured a slightly concave curve between each buttress.

Forty (40) hollow sidewalk segments contain brick buttressed street retaining walls. The hollow sidewalk segments at 1000 2nd Street feature street retaining walls that stand on raised, corbelled bases and the hollow sidewalk segment at 715 Merchant Street features brick street retaining walls with corbelled piers. Most frequently, however, street retaining
walls are unadorned. Over time, street retaining walls were parged with concrete or reinforced with new walls which parallel the original wall and block its visibility from the interior of the hollow sidewalk space. The buttressed street retaining walls at 1012 J Street have been clad with stucco and in 910 2nd Street and 127 K Street, the street brick buttressed street retaining walls have been covered or replaced.

Brick Piers and Walls below the Building
The brick system supporting the building wall also contributes to the character of the hollow sidewalk space. Buildings which were raised tend to be supported by brick piers or solid brick walls, while buildings to which stories were added retained the original first story facade at the basement level. Brick piers range from simple, rectangular or square shaped, utilitarian supports to narrow, engaged piers with corbelled bases. Some brick piers with corbelled brackets may have supported iron I-beams or wood beams spanning the hollow sidewalk space and supporting the sidewalk above. Buildings featuring the original building wall within the hollow sidewalk space typically featured door and/or window openings, including openings that may have been infilled when stories were added to the building. Window and door openings sometimes include wood or granite thresholds and/or metal covers that may have been installed to safeguard against fire.

Seven (7) hollow sidewalk segments contain brick piers which support the building wall. Most piers lack ornamentation; however, the piers in the hollow sidewalks space at 900 J Street feature piers with corbelled bases and 1131 J Street contains a brick wall with engaged-piers on corbelled bases. There hollow sidewalk segments at 1012 J Street are supported by piers with corbelled brackets. The hollow sidewalk at 831 K Street featured granite-capped brick piers.

Original Facade below the Building
Thirty-seven (37) original facades were recorded in the Raised Streets and Hollow Sidewalk District. Approximately half of these were unadorned, but eighteen (18) featured door and window openings. Some of the door and window openings, such as those at 111-113 K Street and 114 J Street, were infilled with brick. The best examples of the original building facades were located at 1000 2nd Street, 729-731 J Street, and 918 J Street, which contained clearly articulated openings with thresholds.

Ceiling Systems
Two types of structural systems were used to span between the street retaining wall and the building and support the sidewalk above: a wood post and beam system, and a brick barrel vault system. The post and beam system was supported by the street retaining wall and by framework in or paralleling the building wall. Beams spanning the hollow sidewalk space were covered with wood planks and topped with brick or cement, which was the sidewalk surface. The hollow sidewalk at 918 J Street is the only example of this structural system that was surveyed. The brick barrel vault system is comprised of shallow, arched brick vaults between iron I-beams which were spaced four to six feet apart and were supported by the street retaining walls and brick building walls or wood posts. Wood planks or cement above the vaults formed the sidewalk surface. Tie rods were located at the base of each arch to hold the sides together with tension. Only one (1) property surveyed featured the brick barrels vault system: 831 K Street. City photographs and previous surveys reveal that hollow sidewalk segments at 705 K Street and 1020 J Street also contained brick barrel vaults. Most sidewalk spaces that were surveyed featured retrofitted ceiling systems that incorporate concrete or steel I-beams as reinforcement.

End Walls
When the raised streets and sidewalks were first constructed, the hollow sidewalk segments were continuous, spanning the length of entire blocks; however, over time, the spaces were divided by partition walls or end walls that property owners constructed at the lot lines to secure the spaces from occupation or theft. End walls in the sidewalk segments surveyed were comprised of brick, concrete block, and poured concrete. Only one property, at 707 J Street,
Water Tanks
In some of the hollow sidewalk segments, notably, those located at the corners of blocks, there were cylindrical, brick water tanks, which likely held water in case of fire. Two corner properties—1125 9th Street and 729-731 J Street—contain brick water tanks. The tanks at 1125 9th Street are parged with concrete.

Sidewalk Lights, Elevators, Starred Manhole Covers
Finally, at the street level, many hollow sidewalks contained sidewalk lights, metal elevator doors, starred manhole covers, and/or granite curbs. Sidewalk lights were comprised of glass block prisms, which, although opaque in appearance on the surface, angled into the hollow sidewalk space below. The prism lights in Sacramento's hollow sidewalks were manufactured in Chicago, Illinois. Good examples of sidewalk lights are located in the hollow sidewalk segments at 927-931 J Street, 801 K Street, and 1015 7th Street. Metal elevator doors, installed flush in the surface of the sidewalk, allowed access to the hollow sidewalk space from the street level so that goods could be easily transferred into the building's basement. The property at 1000 J Street retains its elevator and access doors. It is not known when the manhole covers were installed in the sidewalks, but they appear to be steel and adorned with a distinctive starred design. They were likely installed as an early measure to access the water and sewer systems. Starred manhole covers are present at 910 J Street, 801 K Street, 1030 J Street, and 923 7th Street. Some hollow sidewalk segments feature granite curbing. Granite curbs most frequently appear at the junctions of alleys and streets. It is likely that the granite curbs were installed when the streets were raised. It is also likely that the granite was transported from Folsom via the Sacramento Valley Railroad because granite from Folsom was utilized in the construction of the State Capitol building in Sacramento as well. Granite curbs were noted at the southeast corners of 9th and J streets and 7th and J streets. They were also recorded to either side of the J/K Alley at its intersection with 10th Street. Finally, the hollow sidewalk segment at 725 J Street features granite stairs leading from the street into the hollow sidewalk space.

Integrity
The character-defining features of each hollow sidewalk segment were noted and the integrity of the segment was ranked. The hollow sidewalk segments are significant as products of the City of Sacramento's effort to raise the streets between 1863 and 1879; therefore, California Historical Resources Status Codes (CHRS Code) were assigned to each segment based on its level of integrity, or ability to convey that significance. Only those segments with the Highest or Above Average integrity levels were assigned status codes of 5D3, indicating that the resource appears to be a contributor to a district that appears eligible for local listing or designation through survey evaluation. Hollow sidewalk segments identified with Average or Low Integrity were assigned status CHRS status codes of 6Z: they were found ineligible for the National Register, California Register, or for local designation through survey evaluation.

Contributing Features
The level of Highest Integrity was assigned to the seven (7) hollow sidewalk segments that best convey how the streets, buildings and sidewalks were raised. These segments are typically supported by brick, buttressed retaining walls and brick building walls and contain an exceptional level of detail in the brick building wall, including door and window openings and jamb and thresholds.

One sidewalk segment retained the brick barrel vaulted ceiling system. The segments might also feature street level features, such as sidewalk lights, elevators, starred manhole covers, and granite curbs.
A ranking of Above Average Integrity was assigned to the seventeen (17) hollow sidewalk segments that retain enough character-defining features to convey that the streets, buildings, and sidewalks were raised. These segments generally retain the brick, buttressed street retaining wall and/or the brick building wall or piers, but these features may have been modified. Additionally, hollow sidewalk segments with Above Average Integrity may contain fewer or altered building wall features such as door and window openings that have been infilled or covered with metal, fire-proofing panels. Sidewalk lights, elevator doors and manhole covers may be sealed—visible only from below or above the hollow sidewalk. The hollow sidewalk space may contain character-defining features, but the integrity of these features may be lower than those in the hollow sidewalk segments in the Highest Integrity category.

Non-Contributing Features
Twenty-three (23) hollow sidewalk segments were assigned ratings of Average Integrity. These segments retain some character-defining features but these features do not adequately convey that the streets and buildings were raised. The segments generally retain either the brick, buttressed retaining wall or brick wall/piers below the building; the hollow sidewalk is generally supported by at least one wall that has been significantly altered or removed.
Segments of Average Integrity may retain some other character-defining features such as openings in the building wall or sidewalk lights, but these have generally been modified—infilled or covered.

<table>
<thead>
<tr>
<th>Average Integrity</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of Segments</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
</tbody>
</table>

Thirteen (13) hollow sidewalk segments were assigned a level of Low Integrity and do not retain enough character-defining features to convey that the streets and buildings were raised. The building wall/piers in these segments has in many cases been completely removed and the brick buttressed street retaining wall has been removed or covered. The segments remain hollow but all character-defining features may be absent. In many cases, the hollow sidewalk segment has been finished with plaster or outfitted as an extension of the building’s basement level.

<table>
<thead>
<tr>
<th>Low Integrity</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of Segments</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>
The integrity levels of each hollow sidewalk segment are identified in the following map.
D4. Boundary Description

D6. Significance (continued)

The raised streets and hollow sidewalks in Sacramento represent the City's response to chronic flooding of the downtown. This effort is particularly significant in the context of the flood control measures that the federal and state governments took contemporaneously. The U.S. Army Corps of Engineers re-directed the American River and removed mining debris to increase its flow and both the state and county governments pursued the construction of levy systems, while the city government pursued the raised streets project downtown. The project reflects the political culture of the mid-19th century and also demonstrates why Sacramento was selected as the State Capital and the terminus of the transcontinental railroad: the city was particularly attractive to investors because it was willing to accommodate them. Rather than lose its bid as the State Capital or risk losing the railroad, Sacramento aggressively pursued the raised streets project to lessen flooding in the downtown and to improve the city’s drainage and infrastructure system. Politics in the City of Sacramento reflect its willingness to accommodate entrepreneurship.

Sacramento is not the first or only city to raise its streets. Chicago, which began to raise its streets in 1856, may have been the first to improve its infrastructure on the same scale. The raised streets program in Chicago is most similar to Sacramento’s project: streets were raised using dirt fill from the river, buildings were raised to meet the new grade, and hollow sidewalks were constructed between the streets and buildings.
In Seattle, the effort to raise the streets and sidewalks was spurred by chronic flooding, as it was in Sacramento. The Seattle Fire of 1879 served as the catalyst for the project. Unlike the infrastructure projects in Chicago and Sacramento, however, buildings constructed below the grade of the raised streets resulted when overzealous builders constructed structures immediately after the fire, before the raised street project was completed. Like Sacramento, the federal and state governments simultaneously pursued flood control efforts in Seattle, including damming of the Duwamish River and filling parts of the bay. The resulting streetscapes in Chicago, Sacramento, and Seattle are very similar.

The period of significance for the Raised Streets and Hollow Sidewalks Historic District is from 1863-1879 and covers the period when the streets and buildings were raised and the hollow sidewalks were constructed. Raising the streets was one very specific flood control measure in a series of programs and projects pursued to prevent chronic flooding of the Sacramento Valley. The program was not expanded over time to other parts of the City, nor were the streets and sidewalks universally reinforced or updated at another time; thus the date range of its original implementation best represents its period of significance.

THE ESTABLISHMENT OF SACRAMENTO

John Sutter established the town of New Helvetia, the first permanent Euro-American settlement in the Sacramento Valley near the banks of the American River in 1839. Sutter constructed Sutter’s Fort between 1842 and 1844 on a high point above the confluence of the American and Sacramento rivers. Sutter owned more than 150,000 acres in the Central Valley. He ran a menagerie of enterprises, employing blacksmiths, carpenters, tanners, gunsmiths, vaqueros, farmers, gardeners, weavers, hunters, sawyers, sheep-herders, trappers, and later flour millwrights and a distiller. Sutter began establishing the city of Sutterville on a bluff adjacent the Sacramento River but John Marshall’s discovery of gold at Sutter’s sawmill in Coloma in 1848, disrupted his plans. An international Gold Rush ensued and overnight, the embarcadero at the confluence of the Sacramento and American rivers transformed into a major port where speculators disembarked on their way to mines north of the area. The port became known as Sacramento and despite seasonal flooding, the town’s proximity to the river caused it to quickly surpass Sutter’s Fort and Sutter’s planned community at Sutterville in population.

Sacramento grew dramatically and some buildings were erected in the course of a single week. Merchants changed their locations monthly to best position themselves to sell their merchandise to the arriving speculators. Business sold a variety of goods including tools, hardware, machinery, raw materials, clothing, and food. Stables, feed stores, leather stores, and blacksmiths were also located on major thoroughfares, like J Street, which led east in the direction of the gold mines. Whole wagon trains bound for the gold fields to the north were outfitted from stores along J Street.

At John Sutter Jr.’s request, Captain William H. Warner and his assistant, Lt. William Tecumseh Sherman, surveyed the City of Sacramento and laid a street grid in 1848. Streets running north-south were labeled with numbers, while those running east-west were labeled with letters. An alley running east-west bisected each city block, which contained a total of eight 80’ by 160’ lots. The exception to this pattern was a strip of larger blocks between 12th and 13th Streets, which held ten 80’ by 160’ lots. The terrain increased in elevation as it moved west, away from the river, but the land was somewhat bowl-shaped, with the area between I and L streets lower than that to the north and south. With a street grid platted and development of the town in full swing, the California State Legislature officially recognized Sacramento’s City Charter in 1850.

J Street served as a major thoroughfare leading from the Sacramento River to 12th Street, where routes branched north and east to the gold mines beyond the city. From the intersection of 12th and J streets, wagons either continued east to Hangtown (Placerville) and Coloma, or turned north toward Auburn and Marysville. Because J and K streets were the most heavily trafficked, businesses were first constructed on the city blocks lining these streets.
Samuel Hensley and Pierson B. Reading constructed the first frame building in Sacramento at the intersection of Front and I streets. Shortly thereafter, merchant Samuel Brannan erected a frame store at Front and J streets. By 1850, the port of Sacramento was receiving two passenger ships a day. In 1852, Sacramento had a population of approximately 12,000. In response to devastating fires in 1849 and 1852, the City passed an ordinance in 1855 which mandated the construction of brick buildings in the business district. By 1856, the city had approximately 500 brick and 2,000 frame buildings. Sanborn maps from 1895 show that buildings in the business district generally ranged from one to three stories in height.

Incentive to Raise the Streets: the State Capitol and the Railroad

Sacramento’s early economy was fueled by capital investment and the city’s initial industry relied upon commerce. To ensure the security of their investments, businessmen encouraged the establishment of local government. Congress approved the Treaty of Guadalupe Hidalgo in 1848, which ended the Mexican-American war and made California a territory of the United States. Subsequently, in 1850, California was admitted as a free state to the Union. The Gold Rush had necessitated a stable government in Sacramento before that time, however, and in 1849, merchants created a simple government for Sacramento County which consisted of a sheriff and an alcalde (mayor). In August of that year, a territory-wide election was held to determine the members of Sacramento’s first city council and elect the city’s first mayor, Hardin Bigelow.

Sacramento served as the temporary State Capital in 1852, but it was in 1854 that the Senator Amos Parnall Catlin introduced a bill to permanently locate the State Capital in Sacramento. At the time, Sacramento had a new courthouse and offered the block bounded by I and J streets and 9th and 10th streets for the construction of a new state capitol building. Sacramento was attractive to legislators because of its lodging and transportation amenities—the city featured fifty-five hotels, plank roads, fourteen stages, and twenty-eight river steamers in 1854. Although the cities of San Francisco, Oakland, and San Jose competed to serve as the capital, and the floods of 1861-1862 delayed construction in Sacramento, work on the capitol building designed by Miner Frederick Butler began in June of 1863. The capitol would stand on state land bounded by L and N streets and 10th and 12th streets.

Shortly after the City of Sacramento became the state capital, the Sacramento Valley Railroad, one of the first railroads west of the Mississippi, opened in February 1856. The rail line ran twenty-two miles from the Sacramento Valley Railroad depot in Sacramento to Folsom, operating freight and passenger trains. The trains were instrumental in the transport of people and goods from Sacramento to Folsom, where stages and wagons provided transportation to the mines further north. In 1861, Sacramento merchants and entrepreneurs Leland Standford, Charles Crocker, Collis Huntington, and Mark Hopkins incorporated the Central Pacific Railroad. The first transcontinental railroad, the Central Pacific broke ground in Sacramento on January 8th, 1893.

The History of Flooding in Sacramento

Established at the confluence of the American and Sacramento rivers, the City of Sacramento was close to transportation and commerce on the river, but was also subject to natural and man-made flooding. The Sacramento Valley flooded each winter and spring due to the combination of rain and melted snow pack from the Cascade Mountain Range and Sierra Nevadas. Hydraulic mining along the river north of Sacramento eroded hillsides and deposited debris in the river which disrupted its natural flow and contributed to the frequency and severity of its flooding.

Shortly after Sacramento became a City, efforts were taken to protect it from flooding. Under Mayor Hardin Bigelow, the City of Sacramento and citizens jointly constructed Sacramento’s first levee. The levee paralleled Front Street and the Sacramento River on the west and paralleled the American River on the north from Sacramento to Brighton. When this levee failed in the flood of March 1852, larger levees were constructed, including one south of the city on R Street.
At this time, the U.S. Army Corps of Engineers began to study the flooding of the Sacramento and American rivers. The 1824 Gibbons v. Ogden U.S. Supreme Court case ruled that because the federal government had the power to regulate commerce, it also had a responsibility to maintain the navigability of the country’s waterways to ensure that they remained unobstructed for the operation of domestic and foreign commerce. The U.S. Army Corps of Engineers’ navigational studies and monitoring of the Sacramento River in 1855 fulfilled this federal obligation.

Despite these initial efforts at flood control, when the rivers rose in 1861-1862, the city flooded again. This time, the city was under water for three months because the levees prevented it from draining.

RAISING SACRAMENTO’S STREETS

In 1853, the Mayor and Common Council first discussed the possibility of leveling and raising the city streets by approximately four feet in areas of lower elevation to prevent flooding. Although there were mixed reactions to the plan, the process began that year. I, J, K, and L streets were raised. J, K, and L streets were raised from Front Street on the west to 9th Street on the east. I Street was similarly graded from Front Street on the west to 6th Street on the east. Redwood crosswalks were constructed between Front and 8th streets. It was an expensive process, but the City wished to maintain its status as the state capital and continue attracting development.

The winter of 1861-1862 brought the most destructive floods ever experienced in the City of Sacramento and spurred the federal, state, county and city governments to develop flood control measures in the Sacramento Valley. The U.S. Army Corps of Engineers undertook a project between 1864 and 1868 to redirect the American River and dredge it of mining debris. By straightening a curve in the American River and joining the American and Sacramento rivers approximately one mile above their original juncture, the Corps increased the flow of the river and decreased its likelihood of flooding. Dirt from the re-routing of the American River was used as fill for the City’s raised streets. Although unsuccessful, the California State Legislature attempted to coordinate levee building at the state and local levels at this time.

The County, which served as the governing body for both the City and County between 1858 and 1862 wanted to raise the levees around the city in response to the continued flooding, but the city wanted to raise the grade of the streets downtown. In 1863, The Board of Supervisors passed the Hite Ordinance, [#151], named after the Supervisor that introduced it, which superseded previous ordinances and established a standard to elevate streets by eight to fourteen feet. Shortly thereafter, the County and City governments split into separate governing entities.

Between 1864 and 1868, the City of Sacramento raised the streets of its downtown by as much as fourteen feet to prevent flood waters from entering the low-lying downtown. Property owners were required to raise or add a story to their buildings in order meet the new level of the streets. In addition, property owners were responsible for building sidewalks that would bridge the gap between their buildings and the raised streets. Raising the streets increased downtown property values by fifty to sixty percent, because the public gained confidence in the security and prosperity of the downtown.

In 1864, the Board of Trustees authorized proposals to fill Front Street south of I Street to high grade. Since this work occurred adjacent to the railroad tracks, the Central Pacific may have encouraged property owners along Front Street to request high grading since it widened the track area and provide extra room for railroad operations. It was the re-grading of Front Street that served as a catalyst for downtown owners to elevate the rest of the city to the high grade level specified in the City’s ordinance. The City’s new elevation was to be level with the top of a hill where City Plaza (Cesar Chavez Park) was located.

To contain the dirt fill, each property owner constructed a retaining wall along the edge of the street in front of his
To strengthen the retaining wall and keep it from collapsing toward the building, brick bulwarks or buttresses, thicker at the bottom and tapering toward the top, were installed against the wall at intervals ranging from four to six feet. Many of the brick walls themselves also angled slightly toward the street to add additional strength.

Although most builders of the bulwarks and street retaining walls were private contractors who responded to requests for bids published by the City, local prisoners were an additional source of labor. The Street Commissioner was the designated Superintendent of the chain gangs and had the authority to order sentenced prisoners to work on streets, alleys, and other places as directed. The number of contractors who submitted bids to construct the street retaining walls increased from two in 1864 to ten in 1865, and there was strong demand for more bricklayers and laborers.

As the streets were raised, sewers and water lines were also installed. Lines, made of brick or wood, were three to five feet in diameter and were egg-shaped. Some corner properties contained brick, cylindrical cistern-like structures underground that may have served as water reservoirs in case of fire.

FLOOD CONTROL AFTER THE RAISED STREETS PROJECT

By the time that the City had completed its project of raising the streets downtown, Governor William Irwin had created the Office of the State Engineer to investigate irrigation, drainage, and navigation of the state's rivers. In 1880, State Engineer William Hammond Hall created the first integrated, comprehensive flood control plan for the Sacramento Valley which consisted of a system of levees, weirs, and bypass channels to protect urban centers. The flood control plan was largely prompted by a flood of the Sacramento Valley in 1878, but did not gain federal financial authorization until 1917 when Congress authorized the Sacramento Flood Control System.

CONDITION OF THE RAISED STREETS AND HOLLOW SIDEWALKS

In the 1970s, many of the raised streets and hollow sidewalks were demolished. Interstate 5 was constructed between 2nd and 3rd streets, bisecting Sacramento's downtown and obliterating the existing street grid, including the associated sidewalk segments. In 1971, the Hahn Company developed a shopping mall along the K-Street corridor. Purchased by Westfield in 1998, the Westfield Downtown Plaza is roughly bound by 3rd Street on the west, J Street on the north, 7th Street on the east, and L Street on the south. Here the hollow sidewalks were also demolished for the construction of the mall.

In response a report written by Barrish, Aldrich and Schroeter structural engineers in 1982 in which the poor condition of the raised streets and hollow sidewalks was reported, the City required property owners to strengthen the most severely deteriorated hollow sidewalk structural systems. Repairs often necessitated the replacement of the original structural system. Many original brick barrel vaults were removed or covered at this time and sidewalk elevators and sidewalk lights were filled.

OTHER “RAISED” CITIES

Although unusual, Sacramento is not the first or only city to raise its streets in response to chronic flooding. In addition to those cities highlighted below, streets were raised on a smaller scale in: East St. Louis, Illinois; Ellinwood, Kansas; Leavenworth, Kansas; and Eureka Springs, Arizona.

Chicago, Illinois (1856)

In mid-19th-Century Chicago, drainage was so poor that the streets remained muddy and transportation across the city was dangerous and time consuming. In 1852, a drainage commission was formed to improve the City's infrastructure. An engineer from Boston, Ellis S. Chesbrough solicited to head Chicago’s new Board of Sewerage Commissioners and design an underground sewer system. Between 1855 and 1856, the city council adopted resolutions to raise
the grade of the city streets by four to fourteen feet to ensure proper drainage. Over the next twenty years, the streets were re-graded with mud and sand from the Chicago River bed and buildings were raised with jacks to meet the new street level. The City of Chicago was in charge of raising the streets and constructing hollow sidewalks to meet the new grade level; however, as in the City of Sacramento, individual property owners were responsible for raising their buildings to meet the streets and sidewalks. Not all buildings were raised—some remain below grade level—but larger buildings, particularly ones of brick construction, were raised with jacks. George M. Pullman, who later produced the Pullman sleeping car, initially made his fame raising buildings in Chicago. In 2001, nearly 2,000 hollow sidewalk segments remained in Chicago; however, the City has an Emergency Vaulted Sidewalk program to fill severely deteriorated hollow sidewalk segments.

Seattle, Washington (1890)
Located in western Washington on hilly land between Puget Sound and Lake Washington, the Seattle area was established in the 1850s. Although located on a natural harbor, which would become a principal port, the City was prone to seasonal flooding from melting snow pack in the Cascade Mountains. Shoreline development was also threatened by tidal flows which could cause Lake Washington to overflow. To combat flooding, the Duwamish River was straightened and channelized and tributaries were diverted. The U.S. Army Corps of Engineers constructed the Hiram Chittenden Locks in 1917 to facilitate boat navigation and to control the water levels of Lake Union and Lake Washington, the water level of which was subsequently lowered ten to twenty feet. Additionally, the Seattle General Construction Company filled the tidal lands with 24 million cubic yards of silt from the surrounding hills.

A movement began in 1876 to raise the streets of Seattle to protect it from flooding, but it did not occur on a large scale until the Seattle Fire of 1889. On June 6, 1889, fire destroyed 64 acres of Seattle’s central business district. As devastating as the fire was, it presented residents with the opportunity to undertake extensive infrastructure improvements including widened and re-graded streets, reconstructed wharves, and municipal water works. The City also mandated new construction to be of brick or steel. It was at this time that the streets in Seattle were raised by ten to thirty-two feet. The Seattle General Construction Company constructed street retaining walls of quarry stone or logs on either side of the roads and filled them with silt from the surrounding hills.

After the Seattle Fire of 1889, the city laid down reconstruction rules for the area but did not specify that new construction be built at the new grade level. Aggressive owners began to build at the original grade and within two weeks after the fire 138 buildings were under construction or completed, but sat partially below the new street level. Wooden sidewalks spanned from the raised streets to the second or even third floors of the buildings. Within two years of the fire, 3,500 buildings had been constructed in Seattle, many designed by architects. By 1897, this Pioneer Square area of the city had become a hub of great hotels, restaurants, and stores — the business, and commercial center of the Pacific Northwest.

Conclusions and Recommendations
Based on information in the Historic Context Statement and the themes previously discussed, The Raised Streets and Hollow Sidewalks Historic District appears to be eligible for listing as a local historic district. The raised streets project reflects the political culture of the mid-19th century and also demonstrates why Sacramento was selected as the State Capital and the terminus of the transcontinental railroad: the city was particularly attractive to investors because it was willing to accommodate them. Rather than lose its bid as the State Capital or risk losing the railroad, Sacramento aggressively pursued the raised streets project to lessen flooding in the downtown and to improve the city’s drainage and infrastructure system.

Additional research is recommended to determine the historic boundaries of the raised streets and hollow sidewalks. Architectural survey of the remaining hollow sidewalk segments that were not accessed during this survey is also advised.
D7. References

Sacramento Bee, March 9, 1863; Jan. 20, 1868; January 28, 1868; February 15, 1868; March 14, 1868; March 18, 1868; April 15, 1868; June 30, 1868.

Sacramento City Clerk, Minutes, Contracts-Sidewalks, Petitions-Streets, 1864-1878, Sacramento Archive & Museum Collection Center.

Sacramento City Directories, 1851-1873.

RECOMMENDATIONS

The Raised Streets and Hollow Sidewalks Historic District should be listed as a local historic district in the City of Sacramento. As a local district, the City would be able to establish policies to encourage the preservation and interpretation of this urban cultural landscape. Ideally, the City could also establish financial incentives to encourage property owners to rehabilitate and maintain the hollow sidewalk segments. Although the raised streets do not appear to be threatened, many the hollow sidewalk segments have been filled because of development.

It is recommended that DPR 523 B Forms (Building, Structure, Object Records) be produced for those hollow sidewalk segments exhibiting the highest levels of integrity. These hollow sidewalk segments tend to retain their integrity because they are underutilized. It may be possible for the City to form agreements with the property owner’s of such segments that would allow public access to the spaces as part of the historic district interpretive program in exchange for funding to rehabilitate individual hollow sidewalk segments.
BIBLIOGRAPHY

Sacramento Bee, March 9, 1863; Jan. 20, 1868; January 28, 1868; February 15, 1868; March 14, 1868; March 18, 1868; April 15, 1868; June 30, 1868.

Sacramento City Clerk, Minutes, Contracts-Sidewalks, Petitions-Streets, 1864-1878, Sacramento Archive & Museum Collection Center.

Sacramento City Directories, 1851-1873.

Unpublished Manucripts:

Boghosian, Paula, and Donald L. Cox, *Downtown Alley Districts*, December 2006.

APPENDIX

MAPS
The following maps were prepared by Page & Turnbull:
- Project Area
- Previous Surveys
- Surveyed Parcels
- Raised Streets & Sidewalk Integrity
- Raised Streets & Year Built
Wamer’s 1850 Map adapted to show extent of Downtown Street Raising.

Map of downtown Sacramento showing extent of Hollow Sidewalks.
In presentation prepared by Brandon Spencer-Hartle.
Raised Streets & Hollow Sidewalks
Sacramento, California

RAISED STREETS MAP (YEAR BUILT)
Page & Turnbull, Inc.
July 20, 2009

Outlined areas show demolished streets

Data based on information from Historic Environmental Consultants (HEC)
SAN JOSÉ MODERNISM

HISTORIC CONTEXT STATEMENT

Prepared for:
Preservation Action Council of San José
72 North 5th Street, Suite #9
San Jose, California 95112

Prepared by:
PAST Consultants, LLC
P.O. Box 283
Petaluma, California 94953
June 2009
TABLE OF CONTENTS

I. EXECUTIVE SUMMARY ...1

- Introduction ...1
- Project Team ...2
- Project Description and Objectives ...2
- Methodology ...5
- Report Organization ..7
- Suggestions for Further Research ...8
- Acknowledgments ...9

II. SAN JOSÉ DEVELOPMENTAL HISTORY ...10

- Introduction ...10
- San José 1920–1941: Valley of Heart’s Delight ...12
- Fruit Industry during the Interwar Period ..12
- City Development: 1920–1941 ...14
- 1941–1950: World War II Transforms San José ...21
- A.P. Hamann and the 1950s ...27
- A.P. Hamann and the 1960s ...35
- A.P. Hamann’s Legacy Expressed in Modernist Buildings38
- Urban Renewal in San José ..44
- Park Center Plaza ...45
- San Antonio Plaza ...47
- The Influence of Silicon Valley ..48
- Key Developments ..48
- Educational Buildings in San José ...52
- Primary and Secondary Schools ..53
- San José State University ...58
- San José City College ..59

III. SAN JOSÉ MODERNISM STYLES ...62

- Introduction to Modernism Styles ..62
- Streamline Moderne ..65
- Minimal Traditional ..67
- Tract Ranch ..69
- Custom Ranch ..71
- Post-and-Beam ...73
- International ...75
- Commercial Modern ...77
I. EXECUTIVE SUMMARY

Introduction

With funds from the Redevelopment Agency of the City of San José (SJRA), The Preservation Action Council of San José (PAC*SJ) retained PAST Consultants, LLC (PAST) to prepare a Historic Context Statement for San José Modernism (San José Modernism), covering buildings constructed during the recent past, the time period 1935-1975. The SJRA and PAC*SJ completed the contract for this report on September 5, 2008. The project commenced with a kickoff meeting held at the offices of the City of San José’s Department of Planning, Building & Code Enforcement on October 8, 2008. The Project Coordinator for SJRA, Dolores Mellon, supervised the meeting, which included Interim Executive Director Brian Grayson of PAC*SJ; Lori Moniz, AICP, Planner II for the City of San José (City), Department of Planning, Building & Code Enforcement; Sally Notthoff Zarnowitz, AIA, Historic Preservation Officer; and PAST Principals Seth A. Bergstein and Paige J. Swartley. Work commenced immediately following this meeting.

The SJRA provided complete funding for this Historic Context Statement, using funds from the Strong Neighborhoods Initiative (SNI), a program started in July 2000. The SNI is a collaborative effort between the Mayor, City Council, local residents and business owners. It is funded by multiple sources, including the City of San José, the SJRA, public-private partnerships, and private funds. The SNI seeks to strengthen San José’s neighborhoods by improving community services and neighborhood conditions, enhancing safety, and making neighborhood associations stronger. Twenty-two “planning areas” in the City are currently designated as Strong Neighborhoods. The two-prong SNI process involves (1) developing a neighborhood improvement plan and forming a Redevelopment Project Area for each of the Strong Neighborhoods, and (2) implementing the neighborhood improvements, including expanded community services, and revitalization or new development projects.1

1 City of San José Redevelopment Agency, Winchester Neighborhood Improvement Plan; Strong Neighborhoods Initiative (October 2001), 8.
Project Team

Redevelopment Agency of the City of San José
200 E. Santa Clara Street, 14th Floor
San José, CA 95113
Dolores Mellon, Senior Development Officer, Transactions Division; Project Coordinator

Preservation Action Council of San José
72 North 5th Street, Suite #9
San José, CA 95112
Brian Grayson, Interim Executive Director

PAST Consultants, LLC
P.O. Box 283
Petaluma, CA 94953
Seth A. Bergstein, Principal, Project Manager and Historic Context Statement co-author*
Paige J. Swartley, Esq., Principal, Historic Context Statement co-author*

*Both Seth A. Bergstein and Paige J. Swartley meet the Secretary of the Interior’s Professional Qualifications Standards in Architectural History and History.

Project Description and Objectives

The Secretary of the Interior’s Standards for Preservation Planning (Standards) defines three primary standards for historic preservation:

Historic Context Statements are the finished product of Standard I. They establish the historic patterns, themes, and associated property types that allow the next two standards to be implemented. As defined by the Standards, the historic context organizes information based on a cultural theme and its geographical and chronological limits. Contexts describe the significant broad patterns of development in an area that may be represented by historic properties. The
development of historic contexts is the foundation for decisions about identification, evaluation, registration and treatment of historic properties.²

National Register Bulletin 16A: How to Complete the National Register Registration Form, defines a **historic context** as

Information about historic trends and properties grouped by an important theme in the prehistory or history of a community, State, or nation during a particular period of time. Because historic contexts are organized by **theme, place and time,** they link historic properties to important historic trends.³

Historic Context Statements tell the stories that explain how, when, and why the built environment developed in a particular manner. This is accomplished by organizing an analysis of historic context around theme, place and time. In this study’s case, the development of Modernist architecture in San José has been organized into a group of themes represented by **historic properties** constructed between 1935 and 1975. Although a small percentage of these buildings have been documented individually through surveys, studies, or other historic reports, this Historic Context Statement is the first comprehensive study of Modernist buildings in San José. Thus, it is not intended to provide a complete history of Modernism in San José or to identify everyone who designed, constructed, or inhabited the historic properties from this time period. Rather, this Historic Context Statement provides a global look at Modernist properties constructed during the subject time period by first establishing the broad historic trends and patterns that specifically gave rise to Modernist buildings, and then to organize the context into a group of themes that are illustrated by the property types (commercial, civic, industrial, residential, religious, educational) that represent San José Modernism.

One of the biggest challenges in saving historic resources is answering the question, “What do we preserve, and why?” This question is particularly relevant when dealing with resources from the recent past. First, many people cannot fathom that a building constructed in one’s own

lifetime could possibly be considered “historic.” Second, an incredible number of buildings were constructed after the Great Depression, and up through the present. Some have estimated that resources younger than fifty years old comprise roughly seventy percent of the built environment. In 2004, the Brookings Institution released a study estimating that by 2030, half of the buildings in the United States would post-date the year 2000. Clearly, buildings of the recent past have fallen under the radar of city officials, city planners and historic preservationists, as they are just now achieving the threshold “50-year” limit.

Specific objectives of this Historic Context Statement are:

- Establish significant events and locational patterns in the development of San José from 1935 to 1975.
- Organize the City’s developmental events and patterns into a group of themes that represent buildings built from 1935 to 1975.
- Develop a list of architectural styles representative of San José Modernism.
- Devise a list of character-defining features for each architectural style for purposes of establishing historic integrity.
- Provide a list of architects, landscape architects, builders, contractors, developers, engineers, surveyors and public artists active during the period of San José Modernism.
- Define eligibility and integrity thresholds and registration requirements for Modernist properties.
- Identify suggestions for further research (stated at the end of this chapter).

5 Id. at 4.
6 A resource less than fifty years old is usually considered ineligible for listing in the National Register unless it is of exceptional importance. In contrast, a resource that is less than fifty years old may be considered for listing in the California Register of Historical Resources if sufficient time has passed to understand its historical importance; it does not have to be exceptionally important. See Chapter VI, *Evaluation of San José Modernist Resources*.
Methodology

This Historic Context Statement is intended to supplement existing context statements covering San José’s social and architectural history. Specifically, the overall historic context for the City of San José has been developed in the document *Historical Overview and Context for the City of San José*, by Archives & Architecture, Glory Anne Laffey, written in 1992. This Historic Context Statement’s time period overlaps two periods defined in the *Historical Overview and Context for the City of San José*: “Inter-War Period (1918-1945)” and “Industrialization and Suburbanization (1945-present).” Laffey’s document focuses primarily on the historic periods that predated the time period for the *San José Modernism Historic Context Statement*. This report is intended to be used in conjunction with Laffey’s report, by elucidating the details of the development of San José Modernism and emphasizing the historic patterns and trends that developed after World War II.

Historical Research

This Historic Context Statement was prepared under accepted professional standards established by the U.S. Department of the Interior, the California State Office of Historic Preservation, and professional historic preservation practice. PAST performed extensive historical research for establishment of this study’s historic context at the following repositories:

- **City of San José, Department of Planning, Building & Code Enforcement, San José, California**

 PAST reviewed relevant files and documentation of buildings during the subject time period, including all State of California DPR forms for buildings constructed between 1935 and 1975. The Department of Planning, Building & Code Enforcement also provided electronic copies of the growth maps used in Chapter II, *San José Developmental History*. Additional information provided by the Department included a complete list of properties annexed by the City, organized by annexation number, annexation name, annexation date, and area of the parcel, given in acres.

- **History San José, San José, California**

 A repository of information covering the history of San José and the Santa Clara Valley. History San José provided a great deal of information instrumental to preparation of this
study. Of particular note are the scrapbooks from the American Institute of Architects Santa Clara Valley Chapter, including several volumes of clippings and newspaper articles documenting projects by the prolific local architectural firm of Higgins & Root Associates, AIA. Other important items from the collection included a number of books containing original parcel maps for the various subdivisions constructed during the City’s greatest period of annexation: 1950-1970, and a wealth of period planning reports by the City of San José, many of them covering this study’s time period.

- **California History Room, Dr. Martin Luther King, Jr. Library, San José, California**

 This repository contains an extensive library of California and local history, clippings files, city directories, Sanborn maps, aerial photographs and period maps of San José and the Santa Clara Valley.

Lastly, the library of PAST Consultants, LLC was utilized for its volumes covering architectural history, architectural styles, and buildings of the Modern Movement.

Field Reconnaissance

PAST conducted field reconnaissance of the City with emphasis placed on the Strong Neighborhoods. Each Strong Neighborhood was driven to determine the existence and concentration of buildings within the study period, as well as the presence of individual outstanding examples of San José Modernism. In addition, on January 9, 2009, Historic Preservation Officer, Sally Zarnowitz, AIA joined PAST for a tour of San José’s Modernist resources. Sally Zarnowitz’s experience in San José and her extensive knowledge of the concentrations of extant Modernist properties in the city enabled PAST to develop a broad understanding of the development patterns within such a large metropolis.

Given the source of funding for this project, it should be noted that the SJRA requested that the Strong Neighborhoods be prioritized, with all images produced in this Historic Context Statement to be of buildings within Strong Neighborhoods only. PAST has endeavored to follow this request to the greatest extent possible. However, a handful of properties, such as Edward Durell Stone’s Wells Fargo Building (1965) at The Alameda and Hedding Street and the former San José City Hall (1957) at North First and Hedding streets, have been photographed in this report because of their significance to the development of San José Modernism.
Report Organization

This Historic Context Statement is divided into six chapters. This Executive Summary comprises Chapter I. Chapter II, San José Developmental History, provides a detailed analysis of the broad historical trends that led to the development of Modernist buildings in San José. Although the city was the financial center of the Santa Clara Valley region, it relied primarily on agriculture for employment until the onset of World War II. The conflict signaled a shift in San José’s economy, from its longstanding tradition of fruit growing and production to the defense and electronics industries. By 1952, the manufacturing sector would lead all other sectors in San José employment, a lead that would increase dramatically well into the 1960s. The development of Silicon Valley continued this trend, as the electronics industry attracted numerous workers, many of whom were educated in the Santa Clara Valley, either at Stanford University, or more notably, at San José State University and San José City College, two institutions that developed substantially in the 1950s and 1960s. The influx of servicemen to San José following the end of the Second World War instigated a dramatic shift in the economy, turning a sleepy and cohesive community into the vast suburban metropolis that exists today.

Chapter III, San José Modernism Styles, divides the historic resources from the time period 1935-1975 into twelve distinct architectural styles. Function types examined include commercial, civic, industrial, educational, religious, and residential buildings. Chapter IV, Historic Themes and Associated Property Types, presents the historic themes and building types that illustrate the historic context that gave rise to Modernist buildings in San José. Chapter V, Evaluation of San José Modernist Resources, provides the federal, California and San José criteria for the evaluation and designation of historic properties. It also includes a list of San José City Landmarks built between 1935 and 1975. Chapter VI, Local Practitioners, provides an alphabetical list and descriptions of some of the architects, landscape architects, builders, contractors, developers, engineers, surveyors and public artists who participated in the development of San José Modernism. An extensive Bibliography follows the final chapter.
Suggestions for Further Research

A project of such enormous scope must be approached in a systematic manner for it to be of value to City officials, City planners, advocacy groups, and the public. As this is apparently the first comprehensive study of Modernist resources throughout San José, decisions about inclusion needed to be made. First, given the funding source for this Historic Context Report, this study focuses on and includes photographs of Modernist resources located primarily within areas designated as part of the Strong Neighborhoods Initiative (SNI), although significant historic resources outside the Strong Neighborhoods are presented and placed within the historic context. Second, the sheer number of Modernist resources located in San José obviated a detailed examination of every Modernist property. Thus, the Strong Neighborhoods became the backbone by which this study is organized. For the most part, resources photographed are within the Strong Neighborhoods. Each photograph includes a caption listing the Strong Neighborhood in which the property resides, if applicable (e.g., a building located in Strong Neighborhood 2 is identified as “SNI 2”). However, taking residential architecture as an example, the greatest concentration of Modernist buildings, those of the lavish California Ranch and Custom Ranch styles, or the Post-and-Beam creations of Joseph Eichler, are not covered extensively in this document as concentrations of these buildings are not within Strong Neighborhoods.

In addition, several building function types, such as civic and religious buildings, are discussed in relatively modest detail, again, because the best examples remain outside of the Strong Neighborhoods. Space limitations also constrain the discussion of religious architecture, due to the sheer number of churches and associated buildings built during San José’s great boom period, the tenure of City Manager A.P. “Dutch” Hamann (1950-1970).

The list of architects and other professionals in Chapter III, Local Practitioners, is perhaps the first attempt at compiling a list of firms and individuals who helped create Modernist architecture in San José. Much of this information was developed from the American Institute of Architects Santa Clara Valley Chapter’s scrapbooks that have only recently been acquired by History San José. PAST has been informed that additional information will become available from the AIA.
Santa Clara Valley Chapter. Thus, the list of local practitioners should be expanded as additional scholarly research and documentation of the Modernist period continues.

Suggestions for further research include:

- An analysis of architect-designed residential architecture of the Modernist period.
- Documentation of religious architectural designs of the Modernist period.
- The development of Modernist apartment housing.
- Roadside architecture of the Modernist period, including drive-in restaurants (such as the Flames restaurants), theaters, auto-related service stations, and roadside signs.
- Documentation of Modernist industrial campuses (such as the IBM campus).

Acknowledgments

A report of this scope cannot be prepared without the assistance of a dedicated group of people. PAST acknowledges the help of Dolores Mellon, Project Coordinator for the San José Redevelopment Agency, the agency that provided full funding for this examination of San José Modernism. PAST acknowledges the tireless work of PAC*SJ and its Interim Executive Director, Brian Grayson, for their dedication to the preservation of San José’s historic resources and their understanding of the importance of documenting Modernist properties. PAST also thanks Sally Zarnowitz, AIA, Planning Project Manager and former Historic Preservation Officer for the City of San José, for her help with this project. She shared her knowledge of the City’s architectural history and gave a tour of local Modernist resources. PAST also thanks Lori Moniz, AICP of the City of San José’s Department of Planning, Building & Code Enforcement for her interest in and assistance with this project. The research staff at the San José Public Library’s California History Room, at the Dr. Martin Luther King, Jr. Library, is appreciated for their assistance.

Lastly, PAST acknowledges and thanks History San José, particularly Jim Reed, the Curator of Archives and Library. His scholarly interest in and enthusiasm for the project, and his understanding of where relevant information resides in History San José’s vast repository, benefited this project immeasurably. Other staff and volunteers at History San José also shared their knowledge of Modernist resources located throughout the City of San José.
II. SAN JOSÉ DEVELOPMENTAL HISTORY

Introduction

As presented in the Executive Summary, this report is intended to supplement the work of other context statements used currently by the City of San José. In particular, the 1992 document by Glory Anne Laffey of Archives and Architecture, entitled *Historical Overview and Context for the City of San José*, is the accepted contextual history for the entire city. This document is published on the website for the City of San José’s Department of Planning, Building & Code Enforcement. The Laffey document established a number of periods of historical development for the City; the periods entitled “Inter-War Period (1918-1945)” and “Industrialization and Suburbanization (1945-present)” framing the contextual period for this document, 1935-1975. The following developmental history focuses on the trends that led to San José’s rapid industrial and physical expansion that occurred during the Modernist period. Rather than repeating the data already presented in the Laffey document, the following discussion is intended to enhance, augment, and be used in conjunction with the accepted global historic context for the City.

The following narrative begins prior to World War II to provide a background and assessment of San José’s fruit production industry, which remained dominant until the early 1950s. The discussion proceeds to San José’s greatest period of expansion, during City Manager A.P. Hamann’s tenure (1950-1970), the period in which most of the City’s Modernist resources were constructed. Exploration of San José’s Urban Renewal Projects, fostered during Hamann’s tenure, follows. The influence of Silicon Valley appears next, touching on several key events that led to the development of the greatest electronics and computer technology center in the United States. An examination of educational development in San José rounds out this chapter.

The twentieth century gave rise to the practice of City Planning in San José. An exploration of City Planning documents from the mid-century period provides some of the key events. The

7 City of San José, http://www.sanjoseca.gov/planning/historic. The document can be found by clicking “City of San José Historical Overview and Context” on the right of the webpage.
1916 City Charter created the Planning Commission to establish the goals for the City, to project for future expansion, and to provide the basis for construction in the City to meet those goals. The 1916 City Charter also established San José as one of the first cities in the nation to adopt the City Manager form of government.8

One early manifestation of San José city planning was establishment of the City’s first zoning ordinance in 1929.9 The zoning ordinance was promulgated by Michael H. Antonacci, San José’s Director of Planning, who held office from 1929 to 1965.10 Antonacci was both a dedicated city official and prolific writer. In 1962, in the midst of the City’s expansionist boom period, Antonacci presented a paper to the annual conference for the League of California Cities, entitled Retail Commercial Areas. This document provided factual and statistical data regarding the types of shopping centers and how they would function in an era that increasingly relied on the automobile. The document reveals Antonacci’s acknowledgement of suburban expansion, and the Planning Director grappled with how to facilitate automobile use both within and without the downtown core.11 In addition to the 1962 report, the Planning Commission under Antonacci’s reign produced numerous documents to inform San José citizens of the status of their community and how the Department endeavored to create better living conditions. The documents provide a wonderful chronicle of San José’s expansion, particularly during Hamann’s tenure, and were used extensively in the following discussion.

8 City of San José Planning Commission, The Master Plan of San José, 1965, California, 20.
9 City of San José Planning Commission, Planning San José: Background for Planning (1952), 2.
10 City of San José Planning Commission, 1964 Annual Report, 1. This report celebrated the career of Antonacci, “for a life devoted to professional loyalty and fidelity in rendering decisions commensurate with the ideals and responsibilities of his office as Planning Director of the City of San José for thirty-six years.”
11 Michael H. Antonacci, Retail Commercial Areas: A Presentation to the Annual Conference League of California Cities, City Planners’ Department, 2. Antonacci’s positive thinking reveals that in the 1960s urban planners did not view the automobile as the agent of sprawl.
San José 1920–1941: Valley of Heart’s Delight

Fruit Industry during the Interwar Period

The boom period of the 1920s witnessed an expansion of commercial development in San José. The Bank of Italy (later Bank of America), Sainte Claire Hotel, and Hale’s Department Store were all constructed during this decade. 12 San José was the financial and business center of a vast agricultural area. The fruit industry dominated the Santa Clara Valley during this time; the region was the largest center of fruit production in the country. Numerous food processing and canning companies, such as Sunsweet, Del Monte, Valley View Packing and Mayfair, processed and packaged the bounty from the “Valley of Heart’s Delight.” By the mid-1930s the prune became the dominant fruit, with over 120,000 acres grown in the valley. 13 A steady increase in prune production occurred throughout the 1920s and 1930s, with 116,900 tons produced in 1920 and a peak of 285,700 tons in 1930. 14 Given the vast quantities grown in the valley and the concomitant need to process and package them, demand for fruit processing inspired innovation, both in the drying and processing of the fruit, by numerous companies in San José.

A typical fruit drying scene.
Photo: Courtesy History San José

13 *Id.* at 159.
14 Harry C. Hensley, *Merchandising Policies of the California Prune and Apricot Growers Association, Special Report No. 36, Farm Credit Administration* (December 1939). This document summarizes the fruit industry in California and states on page ii: “Sunsweet easily leads all brands, and Sunsweet advertising is recalled more frequently than that of any other brand. Prunes are generally used in four ways: stewed, raw, prune whip, and prune juice.” The region also produced other fruit, particularly apricots, which accounted for 10,000 tons in 1920 and peaked at 37,455 tons in 1934.
In the 1930s, the Valley View Packing Company, started by Pietro Rubbing, began packing prunes directly from its 18-acre site on the Guadalupe River. Rubbing and his sons soon realized the inefficiency of their operation and developed an efficient dehydration process to speed production. By 1936, 1,500 tons of prunes were sold.15 Joseph Armory, brother-in-law of Frank DiNapoli, who started the Sun Garden Packing Company, designed and constructed two primary machines for processing apricots: the apricot peeler and peach pitter.16 The Anderson-Barngrover Company, located on West Julian Street, developed and produced the continuous pressure cooker and cooler in 1921, a machine which sped the production of fruit considerably and had numerous additional applications. This invention would be responsible for processing nearly eighty-five percent of the canned milk in the United States. The successful development of such machinery for the fruit and food processing markets made Anderson-Barngrover one of San José’s largest and most successful businesses in the 1920s.17 In 1929, Anderson-Barngrover merged with the Bean Spray Pump Company, another large fruit machinery operation, to form the Food Machinery Corporation (FMC), one of the largest fruit machinery manufacturing companies in the world.

Naturally, it became practical to locate canning companies in the Santa Clara Valley, with several large operations settling in San José. The American Can Company (left) built a factory at Fifth and Martha streets, a plant covering two city blocks. A competitor, Continental Can Company, was formed in 1904 and absorbed numerous canning operations in the valley and beyond. They constructed an enormous factory at 357 Taylor Street, located conveniently on the Southern Pacific line for easy delivery. These two

16 \textit{Id.} at 26.
canning companies were responsible for seventy-five percent of the tin cans produced for the entire United States.18 San José companies were among the first to utilize local innovation to create specialized equipment for a particular type of farming method.19 Orchards inspired creativity, just as the electronics and computer industry later would spawn the local innovation that created Silicon Valley.

The miles and miles of orchards in San José and the surrounding Santa Clara Valley, and the associated industry and infrastructure, were the leading sources of employment in San José until 1952. World War II provided an enormous demand for canned and dried fruit, with most fruit produced in the Santa Clara Valley shipped to servicemen and servicewomen overseas. San José remained the center of the Valley of Heart’s Delight during the war years, yet the conflict signified the beginning of a monumental shift in San José’s economy.

\textit{City Development: 1920–1941} 20

The City’s population reached 39,642 residents by 1920. Prior to the building boom that started in about 1930, 1925 was the “peak period of post-war prosperity” for building construction, when a few large building projects increased the annual building permit total to $4,837,315.21 Even after “Black Tuesday,” when the stock market crashed on October 29, 1929, the outlook for local construction activity in 1930 was positive. San José’s population continued to rise: in 1930, 57,651 residents called the Valley of

18 Clyde Arbuckle, \textit{Clyde Arbuckle’s History of San José} (San José, CA: Smith McKay Printing Co., Inc., 1985), 190.

20 Growth maps were provided by the City of San José, Department of Planning, Building & Code Enforcement. The irregular line depicts the current City boundary; the light shading represents the City limits for the given year.

21 Robert Couchman, “$10,000,000 To Be Expended on 1930 Building Projects Here: Greatest Development Program in City’s History Already Mapped Out,” \textit{San José Mercury}, January 1, 1930.
Heart’s Delight home.22 City officials noted that construction of the new Southern Pacific Depot would provide invaluable employment to the community. On January 1, 1930, the San José Mercury wrote about building activity slated for the coming year and predicted that “of vital importance to the community will be the starting of construction on the $4,500,000 Southern Pacific main line re-routing project through the west side of the city.” Building the new line and depot would create jobs, distribute “a large sum of money in varied business channels,” and enable the “establishment of new industries and the expansion of old industries which have postponed such projects until freight service from the new line seemed not too far off.” Total residential construction for 1930 was estimated to be $1.5-1.7 million, to meet the “acute” housing shortage. Industrial construction was estimated at $250,000, and business construction was estimated at $500,000.23 By the mid-1930s this “acute” housing shortage is revealed in Table 1, below, which depicts a steady decline in residential construction.

Table 1. San José Residential Construction 1925-193424

<table>
<thead>
<tr>
<th>YEAR</th>
<th>AMOUNT OF RESIDENTIAL CONSTRUCTION</th>
<th>FAMILY UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1925</td>
<td>$1,525,820</td>
<td>504</td>
</tr>
<tr>
<td>1926</td>
<td>$2,161,630</td>
<td>670</td>
</tr>
<tr>
<td>1927</td>
<td>$1,464,305</td>
<td>355</td>
</tr>
<tr>
<td>1928</td>
<td>$1,216,580</td>
<td>378</td>
</tr>
<tr>
<td>1929</td>
<td>$1,174,265</td>
<td>335</td>
</tr>
<tr>
<td>1930</td>
<td>$713,745</td>
<td>185</td>
</tr>
<tr>
<td>1931</td>
<td>$762,610</td>
<td>147</td>
</tr>
<tr>
<td>1932</td>
<td>$202,880</td>
<td>63</td>
</tr>
<tr>
<td>1933</td>
<td>$152,570</td>
<td>46</td>
</tr>
<tr>
<td>1934</td>
<td>$139,345</td>
<td>37</td>
</tr>
</tbody>
</table>

23 Couchman, “$10,000,000 To Be Expended on 1930 Building Projects Here: Greatest Development Program in City’s History Already Mapped Out.”
Despite earlier rosy predictions of large construction projects, the reality of the Great Depression was beginning to sink in. By March 1930, the Santa Clara County Building Trades Council was urging city officials to “proceed with every possible project or work that will give employment to workmen. The commencement of such work, no matter how small it is to be, will not only tend to immediately stabilize conditions, but in turn will create work and stimulate business in other lines of industry.”

Other help was on its way, for the federal government was about to pass several vital pieces of legislation to ease the housing crisis.

In 1932, the United States government passed the Emergency Relief and Construction Act, establishing the Reconstruction Finance Corporation, which was able to make loans to private corporations providing housing for low-income families. In addition, the Federal Home Loan Bank Board was established to make advances on the security of home mortgages, but homeowners still had other problems. Although these first attempts to foster housing construction were noble, average loans during this period relied on short-term credit, with loan terms averaging three to five years. Given the slow flow of credit during this time, the first federal stratagems required large down payments or second mortgages with high interest rates. There were very few takers at this time of economic hardship.

To address these faults, Congress passed the National Housing Act of 1934 “to relieve unemployment and stimulate the release of private credit in the hands of banks and lending institutions for home repairs and construction.” The legislation created the Federal Housing Administration (FHA), the main federal agency handling mortgage insurance (with policies for single-family and multi-family homes). Mortgages could now be amortized with regular monthly payments. The 1934 Act also authorized the Federal National Mortgage Association (Fannie Mae, chartered in 1937), to create a secondary home mortgage market and free up more money for home loans. Despite such legislation, improvements were slow. In September 1934, the San José Mercury noted that eighty percent of all unemployed workers in San José were in

the building trades, especially in the winter months, and that “Prosperity and unemployment relief are to a marked degree dependent upon our two major industries, agriculture and the building industry.”

By 1936, the FHA began a series of publications for residential house design intended to facilitate the rapid construction of houses by focusing on simplified, low-cost designs. The FHA also developed design standards for subdivisions that approached neighborhood planning for the first time. The publications, such as Subdivision Development and Planning Neighborhoods for Small Houses, developed what became known as the “FHA Minimum House,” a basic plan that established the framework for all house designs within a given subdivision. To reduce monotony, the basic plans were augmented with the placement of entrances to the side as opposed to the front of the house, adding variations in front porch location, or by applying varying architectural ornament, albeit on a very simplified scale. These FHA publications led to the development of enormous subdivisions throughout the country. Houses displayed very little, if any, architectural ornament, giving rise to the “Minimal Traditional” Style. In San José, these houses began to appear in the late 1930s as infill in older neighborhoods and as small residential developments to the east, west and south of the city core.

27 “Possibilities of Modernization to be Demonstrated: Ancient Structure Will be Completely Rebuilt on Downtown Location,” San José Mercury, September 9, 1934.

Even before the Depression, San José had long established its place as the financial capital of the Santa Clara Valley. By the 1890s, the intersection of First and Santa Clara streets boasted a major banking building on every corner. The First National Bank of San José, a City institution that exists today (renamed Bank of the West), constructed a nine-story Neoclassical edifice on the site of their original building. Completed at a cost of $400,000, the building was the tallest banking structure in its day.29 The Neoclassical Bank of America building at 12 South First Street was completed in 1926, as San José’s downtown building boom drew to a close. Designed by H.A. Minton, the building is a contributing structure to the National Register-listed San José Downtown Commercial District and is also a City Landmark.30

Despite the use of classic styles to design these signature banks, downtown buildings began to undergo remodeling in Modernist styles. In 1926, the Bank of Italy remodeled a nineteenth century building at 64-66 West Santa Clara Street in the Streamline Moderne Style.31

In 1930, “San José’s determination to achieve a position of importance as a hotel center” led to $1,255,000 plans for two hotels, the Pershing Hotel at Fourth and San Fernando streets, and the ten-story San José Hotel at Santa Clara Street and Notre Dame Avenue.32 The elegant De Anza Hotel (1930-1931) also joined the San José skyline at 233 West Santa Clara Street. An

29 “San José’s First National Bank Begins 90th Year With New Look.” San José Mercury, September 1, 1963.
30 National Register of Historic Places Inventory-Nomination Form: San José Downtown Commercial District, 2.
32 Couchman, “$10,000,000 To Be Expended on 1930 Building Projects Here: Greatest Development Program in City’s History Already Mapped Out.”
outstanding example of the commercial Art Deco Style, the De Anza Hotel was designed by notable local architect William H. Weeks, with Carl Swenson as the builder.

The tallest hotel in San José at the time of its construction, the ten-story edifice features classic Art Deco styling. Its tripartite composition consists of a base, separated by a string course; the middle, expressed by vertical bands of sash windows and comprised of a ten-story central bay flanked by nine-story bays; and zigzag cornice motifs embellishing the top stories. Groundbreaking for this landmark hotel, listed in the National Register of Historic Places, was on February 27, 1930.33 The De Anza Hotel is also a City Landmark.

De Anza Hotel.
Photo: PAST Consultants, LLC

As 1931 dawned, plans for new construction in San José continued unabated, with the _San José Mercury_ predicting that the new decade would bring more construction than the $31 million that had been expended in the previous ten years. Anticipated new buildings included the eight-story Medical-Arts building on West Santa Clara Street and the Italian-National Building and Loan Association at 27 South First Street. On January 1, 1932, the _San José Mercury_ previewed construction plans for the year, noting that $1.5 million would be spent on public buildings.34

President Franklin D. Roosevelt’s New Deal programs also impacted San José significantly, thanks to money available through the Works Progress Administration (WPA). Buildings constructed included a new post office completed in 1933 and designed by Ralph Wyckoff in the

34 “Million and Half to be Spent on Public Buildings: Postoffice [sic], Armory, Agnew and State College Structures Scheduled,” _San José Mercury_, January 1, 1932.
Spanish Colonial Revival Style. The $305,000 edifice at 105 North First Street and St. John Street was “expected to be one of the finest public buildings in northern California.”35 It is listed in the National Register of Historic Places and is a contributor to a City Landmark District.

WPA funds also helped build a significant addition to the San José skyline: Binder and Curtis’s Civic Auditorium (1934-1936) at 145 West San Carlos Street. On April 13, 1936, the *San José News* ran a cover story on the new “Castle in Spain.” Featuring a photo of its primary elevation, the building represents Binder and Curtis’s interpretation of the Spanish Colonial Revival Style.36 The Civic Auditorium is a City Landmark.

By the late 1930s, local newspapers spoke of a building boom in San José. In 1937, the *San José Mercury* summarized a 1936 report released by Secretary Russell E. Pettit of the San José Chamber of Commerce. The report declared, “A post-boom record in building permits, bank clearings, bank debits, water connections, school attendance, personal income tax returns, recorder’s office filings and deeds recorded.” San José’s metropolitan population was listed at 90,000 versus 89,000 in 1935. Regarding construction, the article noted a significant rise in

35 “Million and Half to be Spent on Public Buildings: Postoffice [sic], Armory, Agnew and State College Structures Scheduled.”

36 “San José Dream of Civic ‘Castle in Spain’ Brought to Complete Realization,” *San José News*, April 13, 1936. The article noted “the community bustled with preparation today as scores of school children and their elders rehearsed for nine hours of programs.” City representatives opened the building to the public the next day, “acting as guides and ushers.” Other articles in the Auditorium’s multi-page spread noted the building “represented the first development in a uniform civic center plan.”
building permits, with “licensed construction amounting to $1,933,855 – the highest since 1930.” Lastly, with a nod to California’s growing infatuation with the automobile, the article noted that “Embracing the county, motor vehicle registrations rose to a record 61,566 from 58,031 in 1935 while 69,970 vehicles are licensed compared with 65,970 the preceding year.”

As 1940 dawned, San José’s population increased to 68,457 residents. In proudly summarizing the history of San José in the 1940 City Directory, Russell E. Pettit, now Manager of the San José Chamber of Commerce, explained that the city was home to twenty-one canneries, twenty-four dried fruit packing plants, and the largest manufacturer of orchard and fruit handling machinery in the United States, the Food Machinery Corporation. By 1945, the city had twenty-two canneries, twenty-four dried fruit packing plants, and two can companies with a production capacity of more than a million cans per day.

1941–1950: World War II Transforms San José

As if in anticipation of the inevitable, military presence began to expand throughout California, especially the San Francisco Bay Area, throughout the 1930s. In Santa Clara County, the United States Navy constructed Moffett Field, and its outstanding feat of engineering, Hangar One. San José itself contributed $60,000 for land acquisition to place the base within its sphere of influence. Officials held a groundbreaking ceremony for Hangar One on October 5, 1931. Critical accidents to the Navy’s burgeoning dirigible fleet occurred, halting the

38 City of San José, “City of San José Infill Development Strategy; Population and Land Area Growth: 1860-2000.”
39 Polk’s San José California City Directory (San Francisco: R.L. Polk & Co. of California, 1940), 15.
40 Polk’s San José California City Directory (1945), 16.
program before the base was commissioned in 1933. However, Moffett Field would play a major role as both Army and Navy base during the war.42

The December 7, 1941 attack on Pearl Harbor signaled the beginning of a permanent shift away from the fruit industry, to those needs demanded by a nation at war. California went into a state of alert – if not outright panic – almost overnight after the event. The fear of a Japanese attack on the mainland was rife throughout the state and officials of the Army and Navy descended upon the City of San José to guard key strategic sites. The entire Commercial Building in downtown San José at 28 North First Street was taken over by the Seventh Army.43 California received nearly twelve percent of all United States government contracts during the war; citizens recovering from the Depression immigrated to California to provide the workforce for the revamped defense industry. These working men and women would produce seventeen percent of all war supplies made in the United States, a staggering figure. The entire region, as well as San José, was teeming with military personnel. Meanwhile, the somewhat dormant Moffett Field became a beehive of activity. After the facility was transferred to the Army in 1935, the Navy again took it over as a base for World War II operations. However, the United States Army Air Force maintained a base for the duration of the war. Fort Ord in Monterey County became one of the largest training centers in the United States. San Francisco became the largest embarkation and training region in northern California for soldiers destined for the Pacific Theater.44

The industrial shift was exemplified by the Food Machinery Corporation, or FMC, which completely changed their operations from producing agricultural machinery to the manufacture of armored and amphibious vehicles for the war effort. FMC converted their San José facilities for construction of these vehicles, as well as utilizing their facilities in Riverside, California and Lakeside, Florida. The company constructed two additional buildings on their West Julian Street site, while remodeling the 1910 Anderson-Barngrover building (since demolished) in the

42 Christensen, \textit{Reflections of the Past – an Anthology of San José}, 166.
43 Arbuckle, \textit{Clyde Arbuckle’s History of San José}, 361.
44 The California State Military Museum, http://www.militarymuseum.org/HistoryWWII.html.
Streamline Moderne Style. After the war, when the defense industry continued to expand in response to the Cold War, FMC relocated to a 120-acre site on Coleman Avenue. Here, they manufactured and tested armored military vehicles and manufactured equipment for missile and rocket systems. In 1945, San José Chamber of Commerce Manager Russell E. Pettit summarized the diversity of industry developed in Santa Clara County during World War II, noting FMC’s contributions and those of many other local businesses:

Wartime production and an industrial promotion program launched in October, 1943, have turned the nation’s industrial spotlight upon Santa Clara County. More than a dozen additions to this area’s industrial family include International Business Machines, Inc., Harold H. Clapp Baby Foods Company, the Briarwood Corporation, General Electric Company and the International Minerals and Chemicals Corporation. The world’s largest cement plant and a $21,000,000 magnesium plant are operated by the Permanente Corporation in the foothills near Los Altos. Other local giants making war production history include the Joshua Hendy Iron Works at Sunnyvale and the Food Machinery Corporation in San José. Moffett Field and the adjacent Ames Aeronautical Laboratory, with one of the largest wind tunnels in the world, have given this area a prominent place in the nation’s aviation picture. Further tremendous expansion for the post-war period is envisioned for both Moffett and Ames.

Following World War II, local architects were busy designing various Modernist buildings. Paying homage to one of San José’s early titles as the “The Garden City,” architect Otto A. Deichman designed the Garden City Theater in Willow Glen, incorporating elements of Streamline Moderne and International styles in this neighborhood, first-run movie house. Across the street, the Lucky’s Grocery Store was designed in the late 1940s by Raymond Loewy, one of America’s most renowned industrial designers. Loewy’s design caters to the rising car culture, as the sign pylon with green neon “Lucky” sign could be spotted by motorists from either direction on Lincoln Avenue. Lincoln Avenue in Willow Glen features a number of additional buildings designed during the period, including the commercial structures at 1181-1185 Lincoln Avenue. The San José Evening News announced the completion of a new J.C. Penney Company building downtown at First and Santa Clara streets. Featuring photographs of its

46 Polk’s San José California City Directory (1945), 17.
47 Alan Hess, “A Sense of Neighborhood: Willow Glen will miss the Garden Theater,” San José Mercury News, August 12, 1990, 1C, 8C.
Streamline Moderne Style (demolished), the 1947 article declared the building a “radical change… embracing latest architectural ideas.” Despite the obvious shift in economy toward defense and technology, San José maintained its reputation as “the world center of the fruit and processing industry with 44 canneries and 30 dried fruit plants.”

World War II brought about both personal tragedy and an enormous sense of communal civic pride. From the Santa Clara Valley, 2,949 residents perished in the conflict, half of them from San José. However, the City joined hands in building the war effort, making San José a calming “home-away-from-home” center for homesick military personnel, and by transforming their industrial capability to contribute material for the war effort. The defense effort also placed the initial seeds of growth in what would become the greatest electronics region in the United States – Silicon Valley – as the need for vacuum tubes and associated electronics was established for applications in radar and aircraft. In 1950, eighty-seven percent of manufacturing in the Santa Clara Valley was in food production. It decreased to forty percent by 1969, based on demands from the defense industry. From 1955 to 1963, over two-thirds of all new manufacturing jobs were related to defense, either electronics or ordnance.

World War II also caused a temporary moratorium in domestic housing construction to conserve materials for the war effort. Meanwhile, the federal government passed several pieces of legislation that would accelerate house construction and foster the trend of suburbanization that still exists today. In 1944, the Veterans Administration (VA) was given the authority to grant home loans to the millions of veterans serving during World War II. The earliest suburbs in San José began sprouting, instead of trees, in the surrounding orchards. Financed by the GI Bill, these houses typically were designed in the Minimal Traditional Style, with little ornamentation. The postwar examples differed from their 1930s counterparts, with the addition of a garage placed prominently in front of the house. The automobile was here to stay.

48 Polk’s San José California City Directory (1949-1950), 17.
49 Arbuckle, Clyde Arbuckle’s History of San José, 363.
Unfortunately, this legislation led to massive emigrations of citizens to the suburbs, causing blight in the urban cores of San José and other cities throughout the nation. Thus, the first urban renewal legislation was passed by Congress: The Housing Act of 1949. This legislation actually contributed to urban renewal at both ends. First, funds were available for clearance of “blight” or “slums” in urban cores, while emphasizing new construction for replacement of building stock. Second, funds under the 1949 Housing Act permitted the acquisition of open space and the construction of infrastructure, such as water and sewer lines, onto the newly-cleared land. Suburbs were now being sanctioned and supported with tremendous subsidies by the federal government.51

It is within this expansionist climate that City Manager O.W. Campbell submitted the City’s first Six-Year Capital Improvement Plan in 1948. Part of this plan included significant investment in City infrastructure and City departments that supported the public welfare. This Capital Improvement Plan would be merely the first in a series of bond measures that would construct a staggering array of civic buildings, many of them displaying Modernist design principles. For example, the modernization of the City’s fire protection program was considered vital, to keep

pace with population and geographic expansion. Fire Station No. 1 (1951, Binder & Curtis, eligible for the National and California Registers, Candidate City Landmark), shown below, is an example of Modernist design principles applied to a civic function type.

Fire Station No. 1, at 201 North Market Street, designed in a mix of International and Streamline Moderne styles.

Photo: PAST Consultants, LLC

The 1948-1954 Capital Improvement Plan was the first attempt to grapple with planning for significant future growth. City Manager O.W. Campbell had no idea how prolific this growth would be when he stepped down in 1949. His replacement, Anthony Peter Hamann, would direct one of the greatest 20-year expansions of any city in United States history.

Despite the wartime industrial shift, the fruit processing industry still remained the dominant employer in the Santa Clara Valley in 1950. The war’s aftermath brought San José to the edge of a construction boom as hundreds of thousands of servicemen and defense workers selected the Santa Clara Valley for their G.I. Bill-assisted homes. Shortly after the war, the appointment of a new city manager would herald an unprecedented era of citywide expansion via land acquisition. On March 27, 1950, A.P. “Dutch” Hamann was sworn in as City Manager, on the exact 100-year anniversary of San José’s official incorporation as a city. This choice of day was now historic for two reasons, as Dutch Hamann would become the most active City Manager in San José’s

52 City of San José, Department of Planning, *First Annual Six-Year Capital Improvement Budget: 1948-1949 to 1953-1954*.
history, possibly the most active of any city in the nation. On Hamann’s first day of work, San José was growing steadily, but its population still remained below the 100,000 mark, sitting at 95,280 residents. The total area of the City was 17 square miles. When Hamann retired on December 1, 1969, the City encompassed 137 square miles and housed over 450,000 residents.55 Before Dutch Hamann became City Manager, the City had annexed various adjoining properties 40 times. However, with the exceptions of Alviso, College Park/Burbank Sunol, and Willow Glen, these early annexations were generally small, under 100 acres. Recognizing San José’s expansion potential and the changing commercial and industrial base of the Santa Clara Valley, Hamann embarked on an aggressive annexation program to make San José the commercial and industrial leader of the region. By the time of Hamann’s departure, an additional 1,389 parcels had been annexed to San José.56 This unprecedented growth in the 1950s and 1960s flooded the City with examples of Modernist buildings of every function type: civic, industrial, commercial, religious and residential. From schools to homes, fire stations to factories, Modernist buildings from the Hamann period abound in San José.

A.P. Hamann and the 1950s

One of the early documents to emerge from the nascent Hamann tenure, entitled *Planning San José: Background for Planning*, was released in 1952. The document summarized city planning efforts to date and provided a set of recommendations for expansion of the City. Several of the goals acknowledged rising

55 “City that Dutch Built Salutes Its A.P. Hamann,” *San José Mercury News*, November 21, 1969, 2. This multiple-page spread chronicles Hamann’s 20-year career as city manager. The article commented that by 1969, San José was “a sprawling giant of 137 square miles and 450,000 – plus population.”

56 Annexation figures were taken from “City of San José Annexation Index,” a hard copy provided by City of San José, Department of Planning, revised July 2, 2007. This document lists all of the City’s annexations since the date of incorporation in 1850. The total number of annexations during the Hamann period was taken from this document, which contradicts a bit with what is written in *Clyde Arbuckle’s History of San José*, which lists a total of 1,377 annexations during the Hamann administration (at 62).
automobile use and included additional downtown parking spaces for up to 15,000 cars by 1960, as well as wider streets in the central business district.57 Like many cities throughout the country and particularly in the West, the automobile continued to assert its dominance in the lives of everyday citizens. While San José’s government began to plan vigorously for additional parking downtown, it also understood the growing trend of suburban migration. The 1952 document notes that the Central Business District, “the city’s big retail area, which pays a quarter of all the city’s and a twelfth of the county’s ad valorem taxes isn’t growing as it should. Traffic inconvenience getting in and out of the area, downtown traffic congestion and shortage of both on-street and off-street parking, are among the unhealthy factors.” The document states that neighborhood shopping centers, in service to the automobile, “are being developed wholly on the basis of convenience.”58 This document chronicles the concerns regarding the effects of the automobile on the downtown business district. While attempts at making downtown car-accessible were being made by City planners, it was becoming clear that suburban expansion was booming in the Santa Clara Valley. The suburban – or “neighborhood” – shopping center was taking hold. From his earliest days as City Manager, Dutch Hamann recognized the automobile’s role in shaping his city’s future and made automobile-related infrastructure the centerpiece of his capital improvement plans throughout his administration.

As he began his unprecedented annexation campaign, Dutch Hamann recognized potential conflicts with other cities. Early in his tenure, the City of Santa Clara annexed new land southward that included the commercially-rich corridor of Stevens Creek Boulevard. Speaking to Lion and Kiwanis Club members in 1951, Hamann acknowledged the dangers of rapid expansion, as cities would need to construct infrastructure improvements hurriedly, such as roads, utilities, police stations, fire stations and schools, to support the newly-developed area. Yet, Hamann exhibited an unquenchable optimism, noting that such infrastructure concerns “cannot be a wedge to stop our growth.”59 Within Hamann’s first year of office, San José annexed eight new parcels, including tracts along Bascom Road and around the previous Willow

57 City of San José, Department of Planning, \textit{Planning San José: Background for Planning} (1952), 2.
58 \textit{Id.} at 10.
59 “City that Dutch Built Salutes Its A.P. Hamann,” 2.
San José Modernism Historic Context Statement
PAST Consultants, LLC June 2009

Glen annexations.60 Hamann negotiated the acquisition of the Kelley Estate during his first two years in office. A controversial and expensive purchase at the time, it added substantial open space to San José before a time of incredible growth.

Despite these bold and costly acquisitions, Hamann, whose position required voter approval every two years, won his 1952 vote of confidence handily: 14,985 to 2,709 votes. In November of the same year, Hamann won voter approval for his first bond initiative for city improvements, totaling $950,000. Work authorized under this bond issue included the much-needed parking improvements for downtown, street and road improvements, general infrastructure improvements including the beginnings of an ambitious fire station construction program, and – of course – annexation.61

1951 was the first year that manufacturing became the largest sector of San José’s economy, as Table 2, below, shows.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Agriculture</td>
<td>16.2</td>
<td>14.3</td>
<td>16.1</td>
<td>16.1</td>
<td>16.2</td>
<td>15.6</td>
<td>14.2</td>
<td>15.0</td>
<td>13.2</td>
<td>12.3</td>
<td>11.1</td>
</tr>
<tr>
<td>Construction</td>
<td>9.4</td>
<td>9.7</td>
<td>9.9</td>
<td>10.5</td>
<td>11.4</td>
<td>13.5</td>
<td>14.6</td>
<td>14.4</td>
<td>15.7</td>
<td>18.8</td>
<td>17.8</td>
</tr>
<tr>
<td>Manufacturing</td>
<td>22.1</td>
<td>26.7</td>
<td>27.6</td>
<td>28.9</td>
<td>29.4</td>
<td>34.6</td>
<td>39.3</td>
<td>46.8</td>
<td>52.1</td>
<td>62.2</td>
<td>70.3</td>
</tr>
<tr>
<td>Transportation</td>
<td>6.1</td>
<td>6.8</td>
<td>6.8</td>
<td>7.0</td>
<td>7.1</td>
<td>7.8</td>
<td>8.5</td>
<td>8.9</td>
<td>8.5</td>
<td>9.1</td>
<td>9.6</td>
</tr>
<tr>
<td>Trade</td>
<td>22.6</td>
<td>24.1</td>
<td>25.1</td>
<td>26.3</td>
<td>26.3</td>
<td>28.3</td>
<td>31.8</td>
<td>34.9</td>
<td>34.9</td>
<td>38.0</td>
<td>40.7</td>
</tr>
<tr>
<td>Finance</td>
<td>3.2</td>
<td>3.3</td>
<td>3.6</td>
<td>4.3</td>
<td>4.3</td>
<td>4.7</td>
<td>5.2</td>
<td>5.8</td>
<td>6.5</td>
<td>6.5</td>
<td>7.1</td>
</tr>
<tr>
<td>Services</td>
<td>18.3</td>
<td>19.0</td>
<td>19.8</td>
<td>21.1</td>
<td>22.3</td>
<td>24.3</td>
<td>26.8</td>
<td>29.1</td>
<td>32.8</td>
<td>38.3</td>
<td>43.2</td>
</tr>
<tr>
<td>Government</td>
<td>11.7</td>
<td>12.2</td>
<td>12.9</td>
<td>13.4</td>
<td>14.5</td>
<td>16.0</td>
<td>17.9</td>
<td>19.2</td>
<td>21.6</td>
<td>23.6</td>
<td>26.8</td>
</tr>
<tr>
<td>Avg. Annual Total</td>
<td>109.9</td>
<td>116.5</td>
<td>122.2</td>
<td>128.0</td>
<td>131.9</td>
<td>144.6</td>
<td>158.7</td>
<td>174.5</td>
<td>185.9</td>
<td>210.0</td>
<td>228.0</td>
</tr>
</tbody>
</table>

In efficient fashion, A.P. Hamann presided over San José’s astronomical expansion beginning in the mid-1950s. He became a fixture inside and outside of City Hall’s walls. Hamann was known for his bus tours of highlights in city improvement given to government officials.

60 “City of San José Annexation Index” (2007).
61 “City that Dutch Built Salutes Its A.P. Hamann,” 2.
62 City of San José, Department of Planning, The Master Plan of San José, California (1965), 36.
potential investors, citizens, and the press. In 1954, the *San Francisco Examiner* reported on one of Hamann’s typical bus tours, in which the City Manager emphasized the need for annexation. On one particular tour Hamann noted that San José was lagging behind its neighbors in land acquisition – a fact that would be perilous for the City’s future. He noted that between 1946 and 1954 and despite the initial annexations in his first two terms, the City had only grown three square miles (the actual figure was a little over four square miles). Hamann notes: “Unless San José decides now to extend its boundaries far enough to accommodate at least 100,000 additional population, the chances are that the boundaries we now have will never be extended materially.”

Annexations in 1955 alone added 5.7 square miles to San José. In 1956, the *San José Mercury News* reported one of the largest annexations to date, identified as Hillview No. 1, and encompassing over 470 acres. This annexation added areas roughly bounded by San Antonio Street to the north, Tully Road to the south, King Road to the east, and the Bayshore Highway to the west. Dutch Hamann had opened the annexation floodgates for new tracts of land to flow through.

Hamann and the City Planning Department unveiled ambitious expansion plans for a Five-Year Capital Improvement Program, 1957 to 1961, in a beefy document entitled *San José Shapes Its Future*. In his typically visionary fashion, Dutch Hamann wrote a brief cover letter for this document calling upon San José to distinguish itself as not just a “large” city, but a “great” city. The document opens with a prediction that would ultimately come true: “San José is very likely to become the largest city, in population and possibly in area, of the San Francisco Bay Region.” The opening section comments on significant growth already occurring in San

63 “San José Leaders Study Future Growth,” *San Francisco Examiner*, June 20, 1954, 8. The article comments on Hamann’s lengthy bus tours: “Hamann recently led a group of twenty-five city officials and key men in the public utility field, in a six hour bus tour which covered seventy-five miles of San José and nearby areas.”

64 City of San José, Department of Planning, *San José Shapes Its Future* (1957), 3.

66 City of San José, Department of Planning, *San José Shapes Its Future*. Hamann opens with this quote (bold included): “San José is destined to become a large city. It is not certain, however, that San José will also become a great city.” The cover letter urges acceptance of Hamann’s policies: “It is hoped that the City Council and other leaders in all walks of community life carefully study the proposed program, improve it, adopt it, and then work for its acceptance by the entire community. By such united deliberation and action, San José can confidently shape its future – a great future.”
San José by 1957: building permits, which averaged $17,164,072 for the years 1950-1954, jumped remarkably to $39,002,944 in 1955 and $56,554,790 in 1956. Along with the corresponding jump in population, the report notes that total retail sales in Santa Clara County nearly doubled, from approximately $336,000,000 in 1948 to about $638,116,000 in 1955. Industrial expansion was quite substantial as well: $60,708,000 invested in industry (a record) in 1953 versus $226,285,000 (another record) in 1956. The report continued, stating “The 1956 expansion will within twelve months produce for our County an estimated 16,700 new factory jobs, which in turn will engender a total population seven times as large, or a population increase of 116,900.67

The Public Safety Program recommended by this report was funded well again. The $1,600,000 allotted for Fire Department improvements resulted in additional fire stations constructed along Modernist lines. Fire Station No. 14, shown to the left, is a fine example.

The report also noted the competition for undeveloped land among Santa Clara Valley cities, stating “Vacant land is rapidly disappearing from the floor of the Santa Clara Valley.”68 The total cost for Hamann’s ambitious six-year plan was estimated at $23,400,000. By far, most improvements were related to the Santa Clara Valley’s best companion, the automobile. Almost half of the requested budget, $12,350,000, was reserved for roadway improvements.69

67 City of San José, Department of Planning, San José Shapes Its Future, 3-4.
68 Id. at 6.
69 Id. at 7: Traffic Program: $12,350,000; Public Safety Program: $1,750,000; Park and Playground Program: $2,500,000; Library Program: $500,000; Auditorium Program: $450,000; Airport Program: $3,500,000; Sewer and Sewage Treatment Program: $1,500,000; and Public Works Service Yard Program: $850,000.
Even though the City’s expansion was merely beginning to hit its geometric proportions, the 1957 report already noted traffic congestion as the City’s greatest problem. Hamann proposed to spend lavishly on adding new parkways, widening or extending streets, and providing grade separations to relieve congested intersections. Hamann and city planners were also savvy in tapping into the newly acquired money provided for highway improvements that began flooding in from state and federal coffers. As early as 1952, San José could take advantage of some federal funding as the Federal-Aid Highway Act of 1952 made available $25 million for the country’s interstate highway system on a 50-50 matching basis. Cities with matching funds could borrow various amounts for freeway construction within the city limits. However, with the passing of the Federal-Aid Highway Act of 1956, government investment for the Interstate System was ninety percent of the proposed $25 billion.\(^{70}\) Cities throughout the nation took advantage of this program to construct freeways or connect to the nascent national freeway system. The City’s 1957 report noted this significant pot of money: “Certain portions of the cost of new expressways may be eligible for State aid under the expanded construction program initiated with the new federal highway aid program.”\(^{71}\)

Hamann and the City wasted little time. By 1958 construction began on the Sinclair Freeway, or Interstate 280, to access the center of San José and tie it into the larger system being expanded to connect to the San Francisco Bay Area.\(^{72}\) This would be realized with the completion of Interstate 280 from San José to San Francisco, providing an alternative to Route 101, in 1965.\(^{73}\) Despite the enormous cost for Hamann’s proposed Five-Year Capital Improvement as described in the 1957 report, the $23.4 billion program was approved by voters. Hamann’s 1958 two-year confidence vote resulted in his typical high approval rating: 9,901 yea, 2,606 nay.\(^{74}\)

\(^{71}\) City of San José, Department of Planning, San José Shapes Its Future, 9.
\(^{72}\) “City that Dutch Built Salutes Its A.P. Hamann,” 2.
\(^{74}\) “City that Dutch Built Salutes Its A.P. Hamann,” 2. A photograph of a highway interchange accompanies the article with the caption, “Freeways replace country lanes.”
Hamann’s aggressive annexations paved the way for the continued development of roadside architecture in San José. Examples of buildings designed specifically for the automobile exist in pockets along major thoroughfares throughout the City. Whether expressed in the frank Programmatic Style\(^{75}\) of “The Orange” (Mark’s Hot Dogs, circa 1936), or the swooping lines of the Googie Style, auto-related architecture abounds.

San José’s extensive annexation campaign became the topic of much debate among rival communities vying for additional space. In 1955, the *San José News* began a seven-part series on the topic of annexation. The first article, entitled “Annex, Annex – ‘Must for S.J.’,” says Hamann,” described the scope of San José’s plans to acquire neighboring tracts of land for industrial and residential expansion. The article notes, “Industrial plants, always a guidepost of the growth of a city, number 237 in San José… New plants coming into the county since 1944 have numbered 182, and San José has received almost half of them.” The article notes San José’s obvious need for residential land; however, it comments that “San José presently has the shape of a lopsided pinwheel, with long, slim projections to the north and southwest.” The article noted that the “southwest feelers” encircling Campbell and approaching the neighboring

\(^{75}\) Historian David Gebhard uses the term “Programmatic” to define expressive roadside architecture. See the book *California Crazy* or Jim Heimann’s *California Crazy & Beyond*.
towns of Los Gatos and Cupertino “are the source of much ill-feeling toward San José at present.” Thus began what newspapers would describe as the “annexation wars.” Simultaneous concerns were voiced in the local papers. On November 25, 1955, the *Los Gatos Times & Saratoga Observer* exclaimed “JEEPERS! THE CREEPER AGAIN – The creeping colossus of the east put out a new feeler last week toward the Saratoga area.” Neighboring cities used the tactic of incorporation to fight the “creeping colossus.” Campbell incorporated in 1952; Milpitas in 1954; Cupertino in 1955; and Saratoga in 1956. All told, San José grew from a total area of 17 square miles in 1950 to 67 square miles in 1960.

An enthusiastic Hamann led another bus tour in 1959 and published data charting San José’s progress in *San José Progress Report*. Hamann noted that 1958 was a record year for San José, with $91,096,437 in building permits, “which included 5,722 single family units, 404 duplex units, and 1,808 apartment units.” In addition, 150 subdivisions were under construction as of February 1959, totaling 8,586 lots. In 1959, the close of A.P. Hamann’s first decade as San José City Manager, a reporter asked Santa Clara County Planning Director Karl J. Belser if the city had reached its annexation limit. Belser replied that San José was “pretty close to the end point of annexation feasibility.” Dutch Hamann was about to prove Belser wrong.

77 “JEEPERS! THE CREEPER AGAIN – The creeping colossus of the east put out a new feeler last week toward the Saratoga area,” *Los Gatos Times & Saratoga Observer*, November 25, 1955. The article continues: “With a tentacle reaching Prospect Road it puts San José in position to infiltrate deeper the unincorporated area of Saratoga, and to further encircle the city of Campbell.”
78 Arbuckle, *Clyde Arbuckle’s History of San José*, 63.
79 City of San José, Department of Planning, *San José: Design for Tomorrow* (1961), 2.
80 A.P. Hamann, *San José Progress Report*, 1959. It appears clear that this bus tour was particularly motivated to garner support for Hamann’s capital improvements. Hamann states, “In viewing the private development of subdivisions, shopping centers, and industries you can readily see why it is important that our Capital Improvement Program maintains the schedule as set forth in *San José Shapes Its Future.*”
81 “Has San José Reached Annexation Limit?,” Palo Alto/Peninsula Times-Tribune, December 21, 1959.
A.P. Hamann and the 1960s

To usher in the new decade, report on the previous decade’s accomplishments, and provide support for the next round of City expansion, Dutch Hamann and the Planning Department released the 1961 report, *San José: Design for Tomorrow*. With the curved, International Style City Hall (1957) gracing the cover, this document was structured similar to its predecessor, the 1957 *San José Shapes Its Future*. In Hamann’s typical laudatory cover letter, he comments upon San José’s meteoric rise over the previous decade: “San José is rapidly becoming one of the large cities of the United States.” The document’s ensuing pages lay out ambitious plans for expansion and development, once again funded by no increase in property taxes. The opening sections provide graphs of population growth, building permits and retail sales – all of which point to the City’s phenomenal growth. Between 1950 and 1960, San José’s population more than doubled: 95,280 residents in 1950 versus 204,196 in 1960. Additionally, building permits in 1959 totaled $128,659,186 as opposed to $57,845,289 in 1957. San José’s retail sales were also growing at an average rate of $100,000,000 per year from 1955-1960. The report noted that “Well-planned annexations have laid the foundation for continued industrial, commercial and residential growth.” The $46.8 million dollar Capital Improvement Program was approved by voters. Hamann also received another overwhelming vote of confidence in April 1960, with 12,791 votes for versus 4,906 votes against.

Annexation was once again the mantra. In 1960 alone, the City gained 11 square miles of annexations, a record for a single year in which 110 parcels were added. The annexation wars continued as well. Milpitas voted not to annex to San José in 1960. Despite this setback, San

82 City of San José, Department of Planning, *San José: Design for Tomorrow*. Hamann estimated that there would be 700,000 San José residents by 1970. His estimate was low by over 300,000 persons.
83 City of San José, Department of Planning, *San José: Design for Tomorrow*, 5.
84 “City that Dutch Built Salutes Its A.P. Hamann,” 2.
85 “City of San José Annexation Index.”
José became California’s fourth largest city by the middle of 1960, with a total area of 62.1 square miles. Such unbridled expansion – 30 square miles – prompted the State of California to create the County Local Agency Formation Commission in 1964 to oversee future annexations and mediate border disputes between cities.\footnote{“City that Dutch Built Salutes Its A.P. Hamann,” 3.} The commission became involved with the continuing negotiations for boundary agreements with neighboring cities Cupertino and Campbell.\footnote{Id. at 2. The article notes “annexations boosted the city’s square mileage to 62.1, making it one-half mile larger than Oakland.”} In 1964, the \textit{San José Mercury} published an article that described the City’s continuous annexations as creating “a crazy-quilt pattern of unincorporated (County) area, almost an island.” The article also noted that San José and Campbell had finally reached an agreement defining their border roughly south of Payne Avenue.\footnote{“The Law and County Crazy-Quilt,” \textit{San José Mercury News}, November 9, 1964, 1. A subheading read, “No Man is an Island – But Cities…”} Despite the outcries pouring in from neighboring cities, 1,800 San José citizens gathered in 1961 to honor Dutch Hamann’s accomplishments: San José was honored as an “All America City.”\footnote{Christensen, \textit{Reflections of the Past – an Anthology of San José}, 187.} With such approval, Hamann’s annexation juggernaut continued, encountering only the odd roadblock here or there.

By mid-decade, San José boasted a population of over 320,000 residents.\footnote{City of San José, City Planning Commission, 1964 Annual Report (1965), 2. The document notes, “The in-migration of persons to Santa Clara County, particularly into the City of San José, still represents the major growth variable in the total population increases.”} 1965 witnessed the release of \textit{The Master Plan of San José, California}, a tome chock full of data charting the City’s extensive growth, along with its shifting economic base since 1952. The document states that San José “has experienced exceptional changes in its economic base. The major changes in employment during the past 13 years have been in the shift from agricultural to industrial and governmental activities.”\footnote{Id. at 34. The description continues: “The San José Labor Market Area has become somewhat dependent on the aerospace industries which include advanced research and production in missiles, space crafts and electronic systems and equipment.”} However, despite the decline in agriculture, the document notes, “With 58 food processing plants in operation during the summer months, San José is the State’s
leading fruit and vegetable canning, freezing, and drying center." The mounds of information meticulously detailed in the 1965 Master Plan all lead to the same conclusion: San José must continue to grow.

Dutch Hamann continued to rally City government and citizens to the cause of further expansion. As usual, expenditures for roadway improvements, along with ties to the fledgling County Expressway and Federal Interstate Highway systems, were among the highest priorities in Hamann’s capital improvement budgets up to the mid-1960s. In 1964, local newspapers announced plans for the construction of Interstate 680 in San José. Hamann predicted construction would begin before the scheduled date. The San José segment of Interstate 680 opened in 1974.

Meanwhile, Hamann did not become timid in regard to annexation. In 1967, the Mercury-News announced the annexation of Mayfair, noting “San José grew again last week – by more than 500 acres and 7,200 persons.” Between 1965 and Hamann’s 1969 departure, the City annexed over 400 additional properties, including large tracts south and east of downtown: Evergreen, Edenvale and Berryessa.

When A.P. Hamann retired on December 1, 1969, he left behind an exhaustive list of civic improvements for the City of San José. The partial list includes an expanded fire protection program that improved the City’s fire insurance rating; connection of San José to the larger state and federal highway systems; expansion of the Municipal Airport to become the fourteenth busiest airport at the time; a relocated County Civic Center featuring Donald F. Haines’s

92 Id. at 34. The document states, “By 1952, manufacturing became the largest sector in employment… During the 1950-1963 period, services rose from third to second, government from fifth to fourth, and construction from sixth to fifth place. In absolute numbers, agriculture was the only sector which declined in employment strength between 1950 and 1963 – from a rank of fourth to sixth place.”

93 “Expressway Plans Released,” San José Mayfair, November 5, 1964. Although the paper anticipated completion of the stretch of 680 through San José by 1970, Hamann was ever the optimist: “But as A.P. ‘Dutch’ Hamann, San José City Manager said the highway will become a reality, as far as work is concerned, ‘much sooner than that.’”

96 “City of San José Annexation Index.”
curvilinear City Hall, a modern wastewater treatment plant, Kelley and Coyote River parks, and an expanded library system. Yet, his greatest legacy was his fervent annexation program that quadrupled the size and population of San José during his 20 years as City Manager. More than any single person, A.P. Hamann was instrumental in providing the land and infrastructure to transform San José from a bucolic agricultural community to the expansive, high-technology metropolis that exists today. When he took his position as City Manager in 1950, San José was a tightly-knit city of 92,000 residents within 17 square miles. When Dutch Hamann retired as City Manager in late 1969, San José had become a major metropolis of 460,000 residents within 135 square miles. His legacy remains in the literally thousands of Modernist buildings constructed during San José’s most protracted boom period: 1950-1970.

A.P. Hamann’s Legacy Expressed in Modernist Buildings

Such huge growth in San José produced a staggering number of Modernist buildings. The City remained the financial center for the sprawling Santa Clara Valley, with numerous impressive banks dotting the landscape.

The Neoclassical First National Bank of San José, located on First and Santa Clara streets, received a complete remodeling (left) in gleaming Modernist lines. Designed by the prolific architectural firm of Higgins & Root Associates, AIA, the bank’s 1963 reopening of its regional headquarters was covered lavishly in an 8-page advertisement. Customers were invited to an open house, where patrons could “Note the dramatic main lobby from First Street. Large glass panels, framed in Swedish granite, make an impressive main entrance.”
The advertisement dubbed the office “Santa Clara County’s most exciting new business building” featuring “the ultimate in bank design for personalized, convenient banking service.” In a nod to the rising computer technology, the advertisement noted that customers should “see First National’s advanced computer center, where checking, savings, loan and charge plan transactions are recorded with amazing speed and accuracy.”

First National Bank (later Bank of the West) would build numerous impressive buildings throughout San José, many of them featuring tile mosaic murals designed in the expressionist Modernist shapes of the day. The photograph below shows an example on South First and Willow streets (SNI 17).

First National Bank of San José. Designed by Higgins & Root, this 1958 structure remodeled an earlier design on the site by the same firm. Note the integration of an abstract tile mosaic with the primary façade of this Modernist building. Photo: PAST Consultants, LLC

98 See “Bank to Construct Drive-In Branch At First, Willow,” and “First National Bank to Double Size of Branch,” San José Evening News, August 27, 1958, Higgins & Root Scrapbook, Vol. 1, 72 and 43. The article from the 1958 remodel notes that “The building’s new front will have a porte-cochere, or canopy, of tubular steel supported by structural steel framing. Four plexiglass sky domes will throw sunlight beams on the front of the building. Special lights will create the same effect at night.”
Edward Durell Stone, described by *Time* magazine in 1958 as “a pioneer modernist . . . by general consensus the most versatile designer of his generation,” also contributed to the San José streetscape. His Wells Fargo Building (1965) on the corner of The Alameda and Hedding Street is a replica of his National Geographic Society Building in Washington, D.C. (1961).

The bank features Stone’s characteristic concrete paneling as an exterior finish, and he reinterprets the New Formalism Style for a corporate application. Stone designed many civic, commercial, educational, religious and residential buildings around the world, including New York’s Museum of Modern Art (1937) and the John F. Kennedy Center for the Performing Arts (1959-71) in Washington, D.C. He also designed the Palo Alto Civic Center (1967), buildings at the Stanford-Palo Alto Medical Center (1955, 1962) and libraries in Palo Alto (1956) and Santa Clara (1966).

Like many visionary architects of his day, Edward Durell Stone possessed strong opinions about the state of architecture in the United States; he viewed the design of modern cities that worshipped the automobile as lacking in beauty, sound design and intelligence. In a 1964 article entitled “The Crisis of Ugliness in U.S. Cities,” for the *San Francisco News Call Bulletin*, an interviewer asked Stone “Are things really that bad in America generally?” Stone’s response:

> To my way of thinking, yes. We are the richest country in history, yet we surround ourselves with vulgar trash, clumsy symbols of the nouveau riche. Compared with us, the Italians are impoverished. They hold body and soul together with a few strands of

spaghetti and are not pampered by creature comforts. But they hear opera on every street corner, and people walk among fabulous things of beauty.

Given the huge financial investments in City buildings and infrastructure, the Hamann tenure produced numerous civic buildings featuring Modernist designs. Perhaps the greatest concentration of these buildings resides in the Civic Center at First and Hedding streets. In 1952, citizens approved the relocation of City Hall out of downtown to First and Mission streets; in 1955 voters approved the $1,975,000 bond measure to construct the building. Architect Donald F. Haines created a curvilinear, four-story, reinforced concrete design sheathed in continuous bands of glass framed by brick veneer on both sides. The result is an impressive Modernist building that reinterprets the European iterations of the International Style. The building utilized 10,000 cubic yards of concrete and over 1,000 tons of structural steel in its design.

102 “The Crisis of Ugliness in U.S. Cities,” San Francisco News Call Bulletin, November 28, 1964. Stone also commented on America’s infatuation with the automobile: “We must decide between people and the automobile. The people will ultimately make this choice.”

103 City of San José Civic Center: Dedicatory Ceremony March 27, 1958; City Hall; Health Center; Communications. This publication accompanied the opening of City Hall and includes site plans, construction photographs and a wealth of information regarding the building.
The population boom and sprawling suburbs that developed between 1950 and 1970 resulted in an array of commercial buildings constructed along a seemingly infinite number of arterial streets and expressways throughout San José. Numerous Modernist buildings along Lincoln Avenue in Willow Glen remain; as well as impressive edifices lining North and South First streets, Santa Clara Street, Alum Rock Avenue, The Alameda, Meridian Avenue, West San Carlos Street, Monterey Road, Bascom Avenue, and Winchester Boulevard. These buildings were generally designed for the instrument of suburban expansion – the automobile – and include a variety of function types: general commercial buildings, shopping centers, drive-in restaurants, automobile sales and repair facilities, service stations, drive-in banks, and theaters. Two examples appear below.

A sample of Commercial Modern buildings along Alum Rock Avenue in SNI 4. To the left, 2850 Alum Rock Avenue features elements of Googie architecture in its roof decoration. To the right, 2880 Alum Rock Avenue was designed using Post-and-Beam Style construction methods and wide expanses of glass.

Photos: PAST Consultants, LLC

To serve the health needs of a large and growing population, medical and dental offices proliferated during the Hamann tenure. Buildings designed in Modernist styles are common in numerous San José neighborhoods, as seen below.
Post-and-Beam design for medical offices at 65 North 14th Street in SNI 14. Photo: PAST Consultants, LLC

A representative group of medical-professional buildings designed in Modernist styles exists at the intersection of Meridian and Park avenues, in SNI 2. The row of buildings was constructed in low-slung, angular forms for several blocks of Meridian Avenue as it approaches Park Avenue. Two views of a building at the corner of Meridian and Park Avenues are shown below.

Medical-professional building at the intersection of Meridian and Park avenues: Park Avenue elevation on the left; Meridian Avenue elevation on the right. Photos: PAST Consultants, LLC

Builders and their architects constructed countless subdivisions during this time period. Homes were designed in practically every Modernist style, from the early Tract Ranch houses bearing austere, yet Modernist detailing, to the sprawling homes finished in Contemporary Ranch or California Ranch styles. Famed developer Joseph Eichler built 550 homes in the Willow Glen area in his characteristic Post-and-Beam Style. Although surrounded by a variety of Tract Ranch
and Custom Ranch homes, all of which were constructed during this time period, the glass-walled Eichlers appear to be on a unique level of design.\(^{104}\)

Many Tract Ranch neighborhoods include houses with interesting Modernist details applied to the ranch form, as the photographs below show.

Two examples of the Tract Ranch Style constructed along Modernist lines. To the left, a home on Richmond Avenue (SNI 2) features a Post-and-Beam Style design similar to those found in Eichler neighborhoods. To the right, a home on Keltner Avenue (SNI 1) utilizes a dramatic A-frame at its corner gable end.

Photos: PAST Consultants, LLC

Urban Renewal in San José

A.P. Hamann is also responsible for instigating the planning process for urban renewal in downtown San José. Discussion of San José’s first urban renewal site, Park Center, began in the late 1950s. Various lawsuits delayed construction as of the 1965 publication date of Hamann’s next Six-Year Capital Improvement Plan (for the years 1966-1973). At that time, San Antonio Plaza was being studied by City officials.\(^{105}\)

\(^{104}\) Paul Adamson, *Eichler/Modernism Rebuilds the American Dream* (Layton, UT: Gibbs-Smith Inc., 2002), 13. The number of homes constructed by Joseph Eichler throughout the Bay Area is noted on a map.

\(^{105}\) City of San José Planning Commission, *San José: A Course for Continued Progress*, 66. Regarding Park Center, the 1965 document states: “… it is anticipated that the first buildings will be under construction by the fiscal year 1966–1967.” Regarding San Antonio Plaza, the report notes: “The San Antonio Plaza Project differs from the Park Center Project in that it will be a partial renewal program where the good structures remain and the older buildings are razed.”
Park Center Plaza

In June 1962, the City began to acquire properties within a thirteen-block area bounded by San Fernando Street to the north, San Carlos Street to the south, Market Street to the east and Almaden Boulevard to the west, with construction commencing in 1968. Architectural models for both Park Center and San Antonio Plaza appeared in a document entitled, *Progress Report on the Goals for San José*, one of the final documents bearing A.P. Hamann’s typically upbeat, pro-development cover letters. The Park Center Plaza project intended to create San José’s – and by association – Santa Clara Valley’s financial center in a series of bold high-rise construction projects that would remove “blight” and create open and entertainment space.

On June 5, 1972, shortly after completion of the majority of Park Center’s projects, the *San José Mercury News* ran a spread showing photographs of several Park Center bank buildings. One caption, titled “The New – and Old,” commented, “San José’s historic old former library, now the Civic Art Museum, contrasts handsomely with the sleek, modern Wells Fargo Building across the street. Bank building is part of the Park Center Plaza, an urban renewal project which has changed the city’s skyline to a striking degree.” Six major national and West Coast banks (Bank of America, Wells Fargo, Union Bank, United California Bank, Security Pacific National Bank, and Bank of California) funded construction of regional corporate headquarters buildings in the 24-acre Plaza complex. Examples of buildings constructed for this project appear below.

106 City of San José, Redevelopment Agency, *Metamorphosis: Redevelopment in San José*, 5. This document outlined urban renewal plans as of 1973. Page 5 is the “Park Center Fact Sheet,” which provides data on the project.
Entrances to the Bank of America Building (1971, left) and Wells Fargo Building (1971, right) in the Park Center Plaza area. Both buildings interpret the Corporate Modern Style. Photos: PAST Consultants, LLC

The Park Center project included construction of a new main library building. No longer used as a library, the former Dr. Martin Luther King, Jr. Main Library was completed in 1970 and designed by Norton S. Curtis and Associates. The son of Ernest Curtis of the prolific local architectural firm Binder & Curtis, Norton S. Curtis combined elements of Brutalism and New Formalism.

Another Modernist building set within the Park Center Plaza Redevelopment Project Area is the San José Center for the Performing Arts (Candidate City Landmark), at 241-271 Park Avenue. Designed by Taliesin Associated Architects of Scottsdale, Arizona, the building opened on

February 17, 1972. Its Organic Style curvilinear design harkens back to the Taliesin firm’s primary influence, Frank Lloyd Wright.¹¹¹

San Antonio Plaza

Located west of San José State University and abutting the Park Center Plaza, early planning for San Antonio Plaza began during the end of the Hamann administration. The City purchased and cleared the land during the late 1960s and into the 1970s.¹¹² In 1973, when the San José Redevelopment Agency released Metamorphosis, its publication lauding the success of Park Center, construction of San Antonio Plaza was lagging. The document noted plans for the “Paseo,” a pedestrian mall that would close three blocks of San Antonio Street. The document states that the project “will generate activity and stimulate civic pride.”¹¹³ This project was completed after 1975 and thus remains out of this Historic Context Report’s scope.

¹¹³ City of San José, Redevelopment Agency, Metamorphosis: Redevelopment in San José, 6.
The Influence of Silicon Valley

By 1970, San José’s population swelled to over 459,000 residents. This section summarizes the influence of Silicon Valley on the development of Modernist resources in San José. Numerous books have explored the rich history of technological innovation and entrepreneurship that defines the Silicon Valley. This section touches on a few highlights of Silicon Valley’s history that led directly to a greater influx of people to the San José workforce, and hence, to the development of Modernist buildings to house, entertain and employ them.

Key Developments

Silicon Valley actually was not identified as such until 1971, when Don C. Hoefler, editor of *Microelectronics News*, coined the phrase. By this time, the Santa Clara Valley electronics industry had undergone the latest of its innovative transformations from the manufacture of vacuum tubes to the development of integrated circuits and silicon chips for computers and small electronics. It is the earlier developments in electronics – and the resulting migration of workers and jobs to San José to grow the industry – that tells more of the story about San José Modernism, 1935-1975. Employment in the manufacture of electronic components peaked at about 2,000 in 1943, declined shortly after the Second World War, and then began a meteoric rise in the early 1950s, thanks to demands from the U.S. Department of Defense during the Cold War. By 1971, after nearly three decades of constant innovation, reinvention and entrepreneurship, the electronics industry employed approximately 20,000 workers.

114 Christensen, *Reflections of the Past – an Anthology of San José*, 209.
116 *Id.* at 6.
The seeds of intellectual development in the electronics industry were planted by Professor Fred Terman of Stanford University’s Department of Electrical Engineering, who sought to attract the brightest minds in the electronics field. In 1951, Stanford Industrial Park was created to provide high-standard research and development facilities in the electronics field; Stanford Research Park followed in 1954. This development is considered to be one of the primary factors in the development of Silicon Valley. The famed Bill Hewlett and Dave Packard, of the vaunted firm of Hewlett-Packard, were two of Terman’s extremely talented students. There were many others.117

During the 1950s, the military was virtually the only consumer of the earliest inventions of the industry: vacuum tubes and semiconductors. As demand increased, the United States military financed innovation and helped build factories to manufacture these devices, whose precise application demands, such as radar and ballistic missiles, required painstakingly exacting standards. An early leader in providing vacuum tubes for defense purposes was Varian Associates. Formed in 1948, its members had already gained experience in vacuum tube development working for other companies during the war. By the late 1950s, with demands for Klystron tubes for radar, aircraft avionics, ballistic missile applications, and missile defense, Varian became the largest microwave-tube manufacturing company in the country. Their manufacturing plant in Palo Alto employed 1,700 workers by this time.118

Vacuum tubes were cumbersome, expensive, and difficult to manufacture under the exacting high-performance standards that the United States Department of Defense demanded. “Silicon Valley” was about to have its name justified. Robert Noyce and his group of electronics scientists established Fairchild Semiconductor in 1957. The firm was the first to develop silicon transistors for the defense industry’s rigorous needs. The company also provided innovations and precise methods of manufacture to control the reliability of their products. As the Cold War dragged into the 1960s and the Minuteman Missile Program was developed, Fairchild gained a

117 Christensen, Reflections of the Past – an Anthology of San José, 207.
118 Lecuyer, Making Silicon Valley, 125.
substantial market share for silicon transistors.

Fairchild transistors were used by International Business Machines (IBM) for their applications, as well.

By 1959, Fairchild had become the largest electronics manufacturer in the Santa Clara Valley, with over 1,400 employees.

IBM is one of the firms that played a major role in San José’s developmental history. A leader in computer technology, IBM released its first Mack 1 computer in 1944. The company opened its first research laboratory on the West Coast in San José, at 99 Notre Dame Street, in 1952. In this facility, the firm pioneered the Random Access Method of Accounting and Control (RAMAC) in 1956. This development enabled IBM to create the first magnetic hard drive.

The firm later developed the flying head disk drive that it incorporated into computers initially sold to American Airlines for its reservation system. During the company’s peak of operation, from the late 1950s well into the 1980s, IBM was the largest employer in San José, with a peak total workforce of 11,000 persons.

The companies that created Silicon Valley innovated in methods of business as well. Fairchild was one of the first of the Valley’s companies to develop its business model around the notion of venture capitalism. In 1961, a venture capital partnership was established that included several of Fairchild’s founding entrepreneurs, Arthur Rock and Thomas Davis of the Kern County Land Company. The group pooled resources to invest in electronics start-up companies throughout Silicon Valley. Its efforts were highly successful, creating enormous financial rewards and leading the group and other entrepreneurs throughout the region to establish additional venture capital projects. With large profits earned and additional investments made, companies splintering to form new and more specialized technical enterprises, and the general expansion

119 Id. at 130.
120 Id. at 147.
121 Id. at 162.
122 Urban Programmers, Historical Report and Evaluation for the Subdivision of Land and Removal of Unused Facilities on 18 Acres at the IBM Corporation Cottle Road Campus, San José, California [hereafter IBM Historical Report and Evaluation], 5.
123 Id. at 7.
and diversity in the region, semiconductor firms sprouted in Silicon Valley much like the fruit orchards of an earlier time.124

One such spin-off was Intel Corporation, founded in 1968 by Fairchild expatriates Robert Noyce, Gordon Moore and Andy Grove.125 The company’s initial production specialized in large-scale integrated circuits that contained thousands of transistors. Intel’s timing was impeccable: in 1972, the manufacturers of home electronics equipment such as televisions, radios, and stereos switched from transistors to integrated circuits for their products. This resulted in an enormous demand for Intel products. Once again innovation was the theme, as Intel needed to pioneer the manufacture of integrated circuits and microprocessors on a large-volume basis. A new plant opened in Mountain View. By 1974, the firm was grossing over $134 million.126

By 1980, Santa Clara Valley boasted over 3,000 electronics firms. The region became the capital of a lucrative and booming industry that attracted thousands of people to San José and neighboring towns. This influx of new workers into a dynamic field supported the continuing expansion of San José, aided by the expansionist policies of A.P. Hamann. Several examples appear below.

Perhaps no group of buildings speaks more to the history of high technology in San José than IBM’s Cottle Road campus. In the mid-1950s, IBM purchased 210 acres of bucolic Edenvale orchards to develop a campus for its primary operations. IBM hired John S. Bolles and Associates to design the campus. His firm (and a cadre of designers including landscape architect, Douglas Baylis; artist Lucienne Bloch; and sculptor Robert B. Howard, to name a few) would create the first campus in the Santa Clara Valley to utilize Modernist design concepts. Based on direction from IBM President Thomas Watson, the campus design was intended to integrate art, nature and work to foster better employee care and comfort, which would lead to

124 Lecuyer, \textit{Making Silicon Valley}, 167.
125 Christensen, \textit{Reflections of the Past – an Anthology of San José}, 207.
126 Lecuyer, \textit{Making Silicon Valley}, 289.
greater employee efficiency.\(^{127}\) Essentially, the Bolles campus pioneered Silicon Valley campus design, from the late 1950s to the modern campuses of such companies as Google, which provide a park-like setting surrounded by nature and featuring innumerable amenities for employees.

In 1958, *Architectural Forum* featured an article celebrating the campus. The article described the “advanced technology and smart design” of the “electronic-age IBM” campus, noting the use of ceramic panels, and extensive integration of public art into the landscape and building design. The article also notes that “classroom buildings face the open country, [and] are separated from each other by open courts.”\(^{128}\) The campus was a large-scale example of Modernist design that melded the natural and built landscape, as well as public art and architecture, in a completely new manner for an industrial campus.

Educational Buildings in San José

School designs in San José changed radically during the twentieth century, a combination of new architectural tastes, governmental intervention, and funding limitations. The 1933 Field Act was the biggest regulatory influence, requiring the Division of the State Architect in the California Department of General Services to oversee the planning, design, construction and alteration of public schools, pursuant to seismic standards. Since 1940, no Field Act school has collapsed in an earthquake and no children have been injured, despite heavy damage nearby.\(^{129}\) However, school districts statewide have demolished many pre-1933 historic schools instead of retrofitting them for continued use. The M.R. Trace Elementary School (1924) at 651 Dana Avenue was a victim of the Field Act, but the Herbert Hoover Middle School (1931) at 1635 Park Avenue,

\(^{129}\) On March 10, 1933, a magnitude 6.3 earthquake caused extensive damage in Long Beach, California. More than 230 school buildings were destroyed, suffered major damage, or were deemed unsafe for occupation. Luckily, school had not been in session. The Field Act was passed a mere thirty days later. [State of California Alfred E. Alquist Seismic Safety Commission, “The Field Act and Public School Construction: A 2007 Perspective” (Sacramento, CA: State of California Alfred E. Alquist Seismic Safety Commission, February 2007), 7. California Education Code §§ 17280-17317, 80030-81149.]
designed by famed architect William H. Weeks still stands.130 It is a San José Historic Landmark.

Designing new earthquake resistant facilities to accommodate the influx of students in San José’s post-war boom period proved to be a full-time job. Higgins & Root Associates, AIA was one of the most prolific school designers in the Santa Clara Valley and particularly in San José during that time.131 As evidence of just how many schools the firm had designed, in 1962 one San José Unified School District board member asked the district to consider whether to “stick with one architect or group that has done good work for it or spread the projects around among as many architects as possible.”132 Although the educational facilities built in San José during A.P. Hamann’s tenure do show the strong influence of Higgins & Root, local and internationally known architects alike helped fill the need for new schools, designing scores of educational buildings, ranging from classrooms to athletic facilities to administration buildings, from elementary schools to colleges.

\textbf{Primary and Secondary Schools}

Pre-war schools built in the modern style in San José are still in use, such as the Abraham Lincoln Senior High School (1941) at 555 Dana Avenue.133 In the post-war boom years, thousands of new students swarmed into the city and severely overcrowded local schools by the late 1940s. Half-day double school sessions were routine, with classes held in school corridors, homes and elsewhere to accommodate pupils spilling out of school buildings. By that time,

130 Originally called the Herbert Hoover Junior High School, it was deemed unsafe under the Field Act but was preserved and is a well-loved Academic, Performing, Visual and Technical Arts school. [Leonard McKay and Nestor “Wally” Wahlberg, \textit{A Postcard History of San José} (San José, CA: Memorabilia of San José, 1992), 120-121. Susan Walsh, State of California DPR Form 523: Woodrow Wilson Jr. High School, 1994.]

131 See, e.g., numerous newspaper articles, sketches and photographs in the Higgins & Root Scrapbook, Vol. 1, 7-8, 18, 23, 29, 35, 55, 57, 61, 63, 64, 72.

132 “Hiring of Architects,” \textit{San José News}, March 18, 1962. Although the firm was not mentioned specifically, it is highly likely that the speaker was referring to Higgins & Root.

133 \textit{A Postcard History of San José}, 121. San José Unified School District, http://www.sjusd.org/school/district-new/school/218.
many Lincoln Glen Elementary School students were educated in an old frame house.134 In February 1948, San José voters approved a $9 million bond to help finance a $10 million building program. Four overcrowded “hot spots” received immediate relief: a six-classroom addition to Lincoln Glen Elementary at 2175 Lincoln Avenue (Higgins & Root Associates, AIA; E.A. Hathaway, contractor), and construction at the College Park, Washington, and Willow Glen schools.135 Other bond-funded projects included a gymnasium for Abraham Lincoln High, new buildings at Technical High School, and the new San José High School.

Ernest J. Kump, Jr., an internationally known architect who specialized in schools, designed the San José High School (1952), now the San José High Academy, which was featured in the famous\textit{Built in USA: Post-war Architecture} book and New York Museum of Modern Art exhibit.136 The site is a complex of buildings that utilizes its corner location at the intersection of East Julian and 24th streets masterfully, with buildings flanking both the north and south sides of East Julian Street. Two views of Kump’s campus, a City Landmark, appear below.

\begin{figure}[h]
 \centering
 \includegraphics[width=\textwidth]{San_Jose_High_School_1952.jpg}
 \caption{Two views of San José High School (1952), now the San José High Academy (SNI 6), by Ernest J. Kump, Jr. \textit{Photo: PAST Consultants, LLC}}
\end{figure}

134 “Six Rooms to be Added to School,” \textit{San José Evening News}, October 8, 1947. “Lincoln School Ground-Breaking Ceremonies Held,” \textit{San José News}, 1950, Higgins & Root Scrapbook, Vol. 1, 75. See also photo and caption, 1949, Higgins & Root Scrapbook, Vol. 1, 83. The Lincoln Glen addition was described as both a six-classroom addition and a cafetorium and five-classroom addition.

135 \textit{Ibid.}

Even considering the relief the new buildings would bring, new subdivisions were creating ever bigger hot spots. The situation was most dire at the elementary school level, attributed to the rising wartime birthrate. In February 1954, voters considered another $7.5 million bond to finance a five-year school building program and 219 new classrooms. The San José Mercury News emotionally urged a yes vote to check overcrowding and keep up with one of the fastest growing populations in the country. The bond would provide only basic facilities, simple and functional schools with “no frills.” Putting the overcrowding in a broader context, the paper trumpeted the “very bright side” of the post-1940 population boom, observing that it brought growing pains but created a sound twelve-month economy versus the seasonal agricultural and canning work that had defined the city for so long. New industries arrived and San José had transformed from a “small town” to a metropolitan area, yet the paper urged citizens to maintain its tradition as an educational center. The $196,000 Bascom Grade School (1957) was one of the new schools built to accommodate the continuing influx of new students. The John Muir Junior High (1959), built south of Willow Glen, was another.

137 The Rosemary Gardens development increased enrollment at the Jefferson and Grant Schools, which had previously been losing pupils. The second Kaiser housing unit at Bascom Avenue would bulge classrooms at the Trace School. The College Park School, already suffering, was bombarded with new students living in freshly constructed homes. The most dramatic enrollment increase was at Willow Glen, with yet more students coming from a new 500-home subdivision in the southeast. (Mary Ogg, “Fall School Jam To Be Worse,” San José Mercury-News, June 6, 1948.) Some of these problems were addressed in the early 1950s. In 1953, the Walter L. Bachrodt School, designed by Goudie & Griffin/Griffin Joyce Associates, Inc., opened at 102 Sonora Avenue, near Rosemary Gardens. (“Kindergarten to Jr. College – New School Construction. In Summer Months, New S.J. School Buildings Take Shape,” August 10, 1953, Higgins & Root Scrapbook, Vol. 1, 69.) Fifteen new classrooms opened in the fall of 1954 at the Kirk School (Kirk and Foxworthy avenues) and the River Glen Primary School (Willow Glen Way at Bird Avenue). (“Work Progresses on Two New San José Schools,” August 1954, Higgins & Root Scrapbook, Vol. 1, 59.)
139 “Bascom School Nears Completion,” unknown San José paper, January 10, 1957.
Perhaps one of the most dramatic examples of growth spurring new school construction occurred in the Union School District (southeast of Los Gatos). Before World War II, the district had only a few dozen students, two teachers, and a two-room 1914 school in the West Valley orchards. But from 1949-1959, the district spent almost $2.8 million to build six schools: Union (1949-1952); Parker (1952-53); Carlton Avenue (1956-58); Lone Hill (1957-59); James DeVoss (1958-59); and Edwin Oster (1959) schools. The district spent another $700,000 for the Idella Lietz and Ralph Noddin school sites, built in the early 1960s. In 1959, the district challenged the state’s low estimate of the local school-age population, seeking additional funding for construction. The district sought to avoid the situation that had arisen elsewhere in California, where school planning was out of sync with population increases and communities had to demolish housing subdivisions to provide new school sites.141

By 1972, enrollments were stable or declining at the elementary school levels, with most enrollment increases occurring at the secondary and junior college levels. Geographically, west San José experienced stable or declining enrollments, attributed to a declining birth rate, scarcity of land for new construction, and older parents keeping their homes once the kids left for college. In contrast, east San José was still experiencing rapid growth and heavy housing construction, and consequently experiencing sharp enrollment increases. San José Unified School District

expected 37,000 pupils in 1972, a 6.5% increase from 1971. Double sessions affected about 26% of the students, in eighteen of the district’s forty-eight schools, and that was the status quo until all unsafe schools could be rebuilt under the Field Act. A $41 million bond act was on the September 1972 ballot, with the new funds earmarked for building additional schools. The Oak Grove district expected 1,500 new students, an 18% increase over 1971. The San Anselmo School opened in 1972, Oak Ridge School was being built, and Bernal Intermediate School was slated to start construction, as well. The East Side Union High School District expected a 10.8% enrollment spike, and the Berryessa District expected 20% more students.142 In the fall of 1972, six San José Alum Rock Union School District schools participated in the first school voucher program in America.143

The Board of Education’s 1971 decision to order the closing of sixteen downtown schools deemed unsafe under the Field Act contributed to overcrowding. But by the spring of 1975, no elementary school students in the San José Unified School District were attending double sessions, for the first time since 1969. However, junior and senior high school students were still in double sessions, pending the completion of new schools funded by a $39 million bond act that passed in 1973. The bond act had also financed four new elementary schools: the Carson, Los Alamitos, Randol and Graystone schools.144

“Alum Rock Schools Hire Voucher Project Director,” San José News, May 23, 1972, 18. The schools were McCollam, Goss, Pala, Miller, Meyer and Carrell.
144 “S.J. Grade Schools Off Double Sessions,” San José Mercury, March 13, 1975, 25.
San José State University

Post-war construction was also heavy at San José’s colleges, including San José State University. Before World War II, enrollment was around 4,000 students, but dipped below 3,000 when students and faculty left for military service or other jobs. By 1949, about 8,400 students (more than Stanford) enrolled from 41 states and all but two California counties, and the school embarked on an ambitious $12 million construction effort.

As the expanded campus emerged between San Carlos, San Fernando, Seventh and Ninth streets, projects on the drawing board included a $1 million music building and $985,000 engineering building on Seventh, a $965,000 speech building on San Fernando, a $500,000 addition to the women’s gymnasium, and a $100,000 addition to the College’s boiler plant. A 200-seat $42,000 Memorial Chapel (Higgins & Root Associates, AIA; O.W. Meyer Construction Co.) was built in 1952, funded by donations to honor the university’s 182 casualties and the 4,200-4,500 students, alumni and faculty who served in World War II. Future priorities included additions to the science building and the library, which would form a second quadrangle on Fourth Street, an administration building, a military science department building, and a police school. Buildings

for the industrial arts and art departments, a health department unit, a student union (1972, by Ernest J. Kump, Jr.), dormitories and an enlarged men’s gymnasium were also planned.

Examples of Modernist buildings on the San José State University Campus (SNI 16): at left, the Engineering Building (1962); at right, Ernest Kump’s Student Union Building (1972). Photos: PAST Consultants, LLC

San José City College

San José Junior College (renamed San José City College in 1958) was housed in San José High School buildings from its 1921 founding until 1928, and then physically associated with San José State College (now San José State University) from 1928-1953. In March 1948, the legislature received a recommendation that the Junior College and State College separate. In 1953, the San José Unified School District began overseeing the Junior College at its own campus on Moorpark Avenue at San José-Los Gatos Road, where Higgins & Root Associates, AIA, had designed twenty “movable” units arranged around a quadrangle, costing $211,000. In Spring 1954, the Board of Education approved the college’s site plan, which envisioned

developing the 58-acre campus for 2,000 students. Immediate plans called for nine additional movable units, plus permanent buildings including an administration building, men’s gymnasium, library, three science laboratories, plus football and baseball fields and a track.152

By January 1956, the San José Mercury News labeled the Junior College as a “burgeoning giant among Santa Clara County schools” with 3,645 students, far above the 1954 estimate of 2,000 pupils. The fears that the Junior College and San José State would compete for students and duplicate offerings had been unfounded.153 The paper noted that given San José’s rapid growth, the only thing that would slow the development of the Junior College would be lack of facilities rather than lack of enrollment.154

February 1961 San José-Santa Clara telephone directory.

Construction continued in the 1960s, when a new master plan was unveiled.155 The cover of the February 1961 San José-Santa Clara telephone directory featured an aerial rendering of the college.156 A new 11,814 square foot Speech Arts building, with a 350-seat theatre (reputedly “the most technically advanced in the San José area”), full stage, mobile orchestra pit, makeup rooms, three classrooms, and modern lighting system was completed in 1963 on the north end of campus. Higgins & Root Associates, AIA, was the architect and O.E. Anderson Co. was the contractor.157 Higgins & Root also designed the college’s 24,600 square foot, concrete block

153 “SJJC May Take Top Spot in Enrollment,” San José Mercury-News, January 15, 1956, 18P.
154 Ibid.
Student Service Center Building (1962), with a sunken, 120 square foot landscaped courtyard, located just south of the Administration Building. In 1963, the San José/Evergreen Community College District was formed, comprising San José City College and Evergreen Valley College.

Two views of the Student Service Center Building (1962) at San José City College (SNI 2).

Photos: PAST Consultants, LLC

158 “SJCC Center,” San José Mercury, October 1, 1962.
159 San José City College, “History of the College,” http://www.sjcc.edu/About/history.html.
III. SAN JOSÉ MODERNISM STYLES

Introduction to Modernism Styles

In 1944, the Museum of Modern Art in New York City exhibited what many consider to be one of the earliest surveys of modern architecture in the United States. Titled *Built in U.S.A. 1932-1944*, the exhibition and book assembled a formidable panel of jurors, including Modernist architect Philip C. Johnson and noted architectural historian Henry-Russell Hitchcock. The exhibition has been considered an announcement to the world that Modernism had taken firm root in American soil.

Twenty years later, the same team of Johnson and Hitchcock took another detailed look at American Modernism, with their 1952 exhibition and accompanying book entitled *Built in USA: Post-war Architecture*. These books were the first attempts by historians and practitioners to place the modern movement into academic perspective. At times, this task has proved somewhat challenging, as so many Modernist “styles” share design principles that we have come to describe as simply “modern”: expressed structural system, absence of traditional ornament, wide expanses of glass, and cubist massing, to name a few. The jurors of these early museum exhibitions appeared to grapple with issues of style in the same way that architectural historians of the modern movement are doing today. However, by 1952, when unprecedented urban expansion was occurring throughout the country and particularly in San José, Henry-Russell Hitchcock stated:

> Today there is no further need to underline the obvious fact that what used to be called “traditional” architecture is dead if not buried. It may be categorically stated – and requires no illustrations to make such a statement plausible – that there is today no realm of building in which respectable modern work is not being done.160

No doubt, Modernism was entrenched in the American design aesthetic. But what exactly characterized a building as modern? The architects of the movement remained more concerned with unique design solutions for America’s postwar problems of rapid population expansion, suburbanization, and the need to provide civic infrastructure and housing in a rapid and cost-

effective manner. For instance, the Post-and-Beam Style appears quintessentially modern to one’s eye; however, the style evolved out of a need to standardize – and thus reduce cost – of the hundreds of thousands of tract ranch houses that sprouted from farmlands surrounding the country’s great metropolises. Architects solved design problems; it was up to the historians to collate, categorize, and ultimately write about such design solutions.

An additional complication of the style question arises simply because so many Modernist buildings appear as new or fresh in our minds. Based on the National Register criteria that a building must be at least fifty years old (or if younger, of exceptional importance) to be listed, some may think that Modernist buildings are simply too young to be considered “historic” because they were built during our lifetimes. However, each building must be evaluated on its own merit and within the appropriate historic context. The construction date alone is not determinative of whether a building merits listing in a historic register.

Regarding the documentation and preservation of Modernist resources, time is becoming an ally. The buildings in the 1952 Built in USA exhibition have achieved the fifty-year threshold. Additionally, federal, state and local criteria (depending on the community) include provisions for historic significance to be attained regardless of whether a building has met the fifty-year threshold. Modernism has also been the subject of study in California and the United States: several context statements studying California Modernism have been published in recent years. These studies, along with numerous books on the Modern Movement by architectural historians, have begun to develop stylistic categories for Modernist buildings. What exactly to call Modernism has run the gamut of terminologies, including “Mid-century,” “Modernism,” or “Resources of the Recent Past” as examples of what others have called the modern style.

Analogies have been raised between the umbrella term “Victorian” and the terms mentioned above. Victorian buildings encompass a group of individual styles: Gothic Revival, Italianate, Queen Anne, and others. While an Italianate building looks little like a Gothic Revival building, the two styles share common characteristics and are both considered Victorian. Much the same
can be said for the term “Modernism,” which includes the various styles constructed during the
time period (in this report’s case, 1935-1975). For the styles described in this chapter and for use
in subsequent historic resource surveys of modern buildings in San José, the term “San José
Modernism” will serve as the umbrella style. It should be noted that like modern architecture
itself, which has always been an ever-changing and adaptable design process, the study of
Modernism is a relatively new and free-flowing field. As surveys and scholarly research
regarding Modernism continue in San José, the styles discussed in the following pages will
change and morph, much like the Modernist designs that have graced the City.

This chapter divides San José Modernism into twelve styles:

1. Streamline Moderne
2. Minimal Traditional
3. Tract Ranch
4. Custom Ranch
5. Post-and-Beam
6. International
7. Commercial Modern
8. Corporate Modern
9. New Formalism
10. Googie
11. Brutalism
12. Organic

For each of the above styles, notes about the origin and local proliferation of the style are
discussed first, with representative photographs given. After each brief discussion, character-
defining features are listed to aid future surveys in establishing historic integrity. Buildings
listed on the San José Historic Resources Inventory (Inventory) are noted, as well as the
particular Strong Neighborhood Initiative (SNI) neighborhood, where applicable, in which the
building is located.
Streamline Moderne (ca. 1930–1950):

The Streamline Moderne Style represents the earliest break from the use of symmetrical massing and traditional or revivalist ornamentation that typified buildings of the early twentieth century. Although details and various design elements from the contemporaneous Art Deco Style are sometimes found on Streamline Moderne buildings, the Art Deco Style applies ornament to traditional building design much like the period revival styles of the 1920s and 1930s did. Emerging from the aerodynamic industrial designs of the 1930s, the Streamline Moderne Style eschews applied ornamentation in favor of the asymmetrical massing, aerodynamic lines and curved corners represented in industrial designs of the period. Federal and civic buildings constructed during the New Deal era chose this cubist, blocky style as a deliberate departure from historicism, in an effort to establish a bold new style for American architecture. Streamline Moderne buildings also caught the public’s eye at the 1939 World’s Fair held in New York City.\footnote{William Morgan, \textit{The Abrams Guide to American House Styles} (New York: Harry N. Abrams, Inc., 2004), 342.}

Houses displaying Streamline Moderne detail exist rarely as infill in older established neighborhoods (see below), while commercial examples exist as commercial and industrial buildings, and as roadside-related architecture.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{house_on_mission_street_streamline_moderne.jpg}
\caption{House on Mission Street (SNI 14) with Streamline Moderne details, including horizontal cornice banding, curved porch, and porthole window. \textit{Photo: PAST Consultants, LLC.}}
\end{figure}
Streamline Moderne: Character-Defining Features

- Horizontal, cubist massing
- Curved building corners often utilized
- Flat or low-pitched roofs
- Smooth stucco or cement plaster finish
- Horizontal banding inscribed into exterior stucco
- Horizontal overhangs or cornice bands often with curved corners
- Steel industrial sash windows (earlier examples with wood-sash windows)
- Glass block
- Rounded or “porthole” windows

Industrial building completed in the late 1930s for the Sunlite Baking Company at 175 South Montgomery Street (SNI 2). Streamline Moderne details include the horizontal cornice band and ribbon windows, contrasted by the projecting, stepped front entrance capped by a canopy with rounded corners. Photo: PAST Consultants, LLC
Minimal Traditional (ca. 1935–1950):

Born out of the necessity for inexpensive housing during the Depression years, the earliest houses appeared as a result of sweeping legislation by the federal government beginning in the 1930s. To stimulate the collapsed housing industry, the National Housing Act of 1934 created the Federal Housing Administration (FHA) to develop minimal housing standards, from design to financing. Between 1936 and 1940, the FHA developed these standards in a series of publications, including *Subdivision Development, Planning Profitable Neighborhoods*, and *Planning Neighborhoods for Small Houses*.¹⁶² The latter publication established the “FHA Minimum House,” featuring a single-story, rectangular plan, a simple gabled or hipped roofline with close (shallow) eaves, and sparse traditional detail, including multiple-pane windows, shutters, clapboard siding, and a small front porch supported on plain columns (see below). The intent of these houses was to provide the least expensive and most easily constructible house form in order to stimulate investment in the housing market. The appearance of traditional ornamentation, though quite small, reflected the conservative taste of the American consumer during the lean years of the Depression.¹⁶³ While the earliest houses featured either an unattached garage or no garage at all, post-war houses added a prominent garage facing the street, in honor of the most important symbol of American freedom – the automobile.

¹⁶³ Id. at 62.
Minimal Traditional Style houses are found throughout San José as infill in older neighborhoods, where the earlier forms appear without garages. They also appear in larger tracts, particularly during the annexation boom of the 1950s. These later tracts are generally easily distinguishable from the earlier infill homes, as they feature a prominent garage, often nearly as wide as the main house itself (see below image). Although considered a single-story style, the Minimal Traditional aesthetic is also found in San José adorning duplex homes and multiple-story apartment buildings.

Minimal Traditional: Character-Defining Features

- Single-story rectangular plan
- Low-pitched, hipped or gable roof with close (shallow) eaves
- Overall lack of architectural detail
- Stucco cladding with clapboard or wood shingle siding
- Small front porch supported by square or rectangular columns
- Overall lack of architectural detail
- Multiple-light windows with shutters
- Prominent attached garage (ca. 1950)

Minimal Traditional duplex on a corner lot fronting Martha Street (SNI 13), showing a mixed stucco and shingle exterior, low-pitched hipped roof, window shutters and simplified entry porch. This duplex form is found in postwar suburban tracts and as older neighborhood infill scattered throughout San José.

Photo: PAST Consultants LLC
Tract Ranch (ca. 1950–1975):

Tract Ranch homes became the standard American domicile during the period of post-war expansion and rapid suburbanization that characterized numerous cities throughout the country, particularly San José. Characterized by an L-shaped or rambling plan with low-slung hipped or gabled roofs, the Tract Ranch communicated modernism through its horizontal lines, open plan and prominent one- or two-car garage. However, the Tract Ranch could be expressed in a pastiche of sub-styles, including Colonial (or other revivalist styles), Modern, or Split-level. These sub-styles are all applied to the basic ranch form in an effort to provide variety within the vast subdivisions in which these homes were constructed. The two photographs below depict Tract Ranch houses in both traditional and modern sub-styles.

Spurred by the economic incentives provided by the federal government to ease the post-war housing shortage and to standardize development and construction practices, the Tract Ranch house became the symbol of modern, post-war living. Popular journals, such as *House Beautiful* and *Sunset Magazine*, extolled the virtues of the modern lifestyle, featuring Tract Ranch houses in virtually every sub-style imaginable. In San José, the Tract Ranch represents the most common house type, largely due to the city’s rapid expansion during the 1950s and 1960s. In 1954, many new San José subdivisions were featured in the Santa Clara Valley subdivision tour, held as part of National Home Week. They included developments such as the Rose Garden Addition, Willow Gardens, Willow Crest, Caputo Acres, Mayfair Heights, Country Club Gardens, and Eastbrook.¹⁶⁴ Vast developments of these Tract Ranch Style houses remain extant throughout the city, with the more common and simplified homes scattered throughout all of the Strong Neighborhoods.

¹⁶⁴ “Valley Subdivision Tour Highlights Celebration Of National Home Week,” *San José Mercury News.*
Two examples of the Tract Ranch Style. The house on Eden Avenue (left, SNI 19) depicts a common linear plan with Colonial details. The house on Keltner Avenue (right, SNI 1), depicts a rambling plan with a projecting A-frame front gable and contemporary details.

Photos: PAST Consultants LLC

Tract Ranch: Character-Defining Features

- Low-slung horizontal massing
- Single-story, with exception of Split-level variant
- Linear or rambling plan
- Low-pitched, hipped or gable roof with overhanging eaves
- Prominent attached garage facing the street
- Stucco clapboard or shingle cladding, often in combination
- Applied traditional ornamentation; or
- Contemporary details expressed through expanses of glass or exposed structural framing

Tract Ranch house in SNI 1, featuring a mix of contemporary details, including projecting front roof gable and concrete-block porch screen. Photo: PAST Consultants, LLC
Custom Ranch (ca. 1950–1975):

The Custom Ranch Style represents a more lavish ranch style intended for clients of greater economic means. Designed for individual clients, rather than for construction in vast housing tracts, the Custom Ranch Style often included sumptuous landscape design. Houses tended to have a more rambling plan, prominent two-car garages, and brick or stone as a decorative element in the base of the façade, as well as in chimneys and porch columns.

The national housing boom following World War II witnessed the rise of a group of architects who dedicated their practice to developing ranch house designs that were a cut above the typical Tract Ranch. In California, Cliff May was perhaps one of the more prominent architects who contributed to the Custom Ranch aesthetic. His articles on Ranch House design were widely disseminated in popular trade periodicals, such as *House Beautiful* and *Sunset Magazine*. In 1946, *Sunset* published Cliff May’s house plans as a book entitled *Sunset Western Ranch Houses*. In this book, Cliff May noted the Ranch House’s accommodation of the warm, sunny California climate through the use of expansive areas of glass to take in sunlight and inviting vistas of the surrounding countryside. In addition, the notion of the Ranch House as expression of the postwar American Dream of home ownership was popularized in local newspapers, which often would announce lavish opening parties for new subdivisions. In 1954, the *San José Mercury News* published a large map and descriptions of almost forty new subdivisions that were open for tours as part of National Home Week. The Custom Ranch, whether in the rambling California Style or strikingly modern Contemporary aesthetic, represented the pinnacle of American home ownership.

Local examples of the Custom Ranch Style are not within the Strong Neighborhoods. However, the example shown on the next page is typical of the more affluent residential neighborhoods to the south, east and west of the original city limits.

165 “Valley Subdivision Tour Highlights Celebration Of National Home Week,” *San José Mercury News*.
Custom Ranch: Character-Defining Features

- Low-slung horizontal massing
- Single-story, sprawling plan with coordinated landscaping
- Low-pitched, hipped or gable roof with wide overhanging eaves
- Prominent attached garage facing the street
- Stucco clapboard or wood shingle cladding, often in combination with brick or stone
- Expansive use of glass in picture windows and rear sliding glass doors opening to backyard
- Custom ornamentation, such as wood shake roofing, stone or adobe decorative cladding at base of house or on porch columns, generous brick or stone chimney

Custom ranch house on Norval Way. Known as the California Ranch Style, this low-slung house features a rambling plan with generous picture windows, a prominent front garage, wood roof shingles and stone cladding at the base. Photo: PAST Consultants, LLC

Post-and-beam construction eschews the use of solid, load-bearing walls for a system of columns and beams to carry the roof and building loads. The resulting structural system facilitates the use of open space planning and expansive areas of glass, both hallmarks of Modernist buildings. The advantage of this method of construction is the use of prefabrication, in which the components of the house are made elsewhere, then shipped to the house site and constructed. Thus, house parts could be standardized and used in endless combinations to construct houses cheaply and efficiently. Post-and-Beam Style houses display the typical Modernist floor plan, often based on a structural grid created by the prefabricated beam and column modules. This flexibility enabled houses to be constructed with multiple room and floor plan options for a given buyer.

In San José, the Post-and-Beam Style is manifested in several scattered tract ranch subdivisions, including one Eichler-designed subdivision of 550 houses (not within an SNI). The image below shows a more modest example in a residential tract, in which solid walls face the noisy street, while the entire rear of the house is finished in glass facing the backyard.

Post-and-Beam Style house on Richmond Avenue (SNI 2). Note the projecting wood beams and low-slung roof. Photo: PAST Consultants LLC

167 Adamson, Eichler/Modernism Rebuilds the American Dream, 91.
168 Id. at 13.
Post-and-Beam: Character-Defining Features

- Low-slung horizontal massing
- Low-pitched, hipped, gable or shed roof with wide overhanging eaves
- Plain façades devoid of traditional architectural detail
- Expressed structural system, obvious in porch supports or exposed roof beams projecting from primary building façades
- Open carport or garage facing the street
- Vertical wood siding or stucco cladding
- Flush-mounted, metal-frame full-height clerestory windows

Post-and-Beam example on Richmond Avenue (SNI 2). In this case, the structural module permits an exposed bank of clerestory windows, framed by the exposed roof beams. Photo: PAST Consultants LLC
International (ca. 1935–1950):

With its origins in the Bauhaus architectural movement created in Europe after World War I, the International Style was not named in this country until 1932, when the New York City Metropolitan Museum of Art produced its first international exhibit of modern architecture. This highly influential exhibit brought notions of European design, as expressed by Walter Gropius, Ludwig Mies van der Rohe and architects of the Bauhaus school, into the American public view for the first time. A book accompanied this exhibition, written by architectural historian Henry-Russell Hitchcock and architect Philip Johnson, entitled *The International Style: Architecture Since 1922*, giving the style its name. The museum continued to espouse the tenets of the International Style in subsequent exhibitions by the same architect-historian team, first with *Built in U.S.A. 1932–1944*, followed by *Built in USA: Post-war Architecture*, a 1952 exhibit and book.

In the introduction to *Built in USA: Post-war Architecture*, Henry-Russell Hitchcock notes that by 1952, the International Style no longer “recall[ed] the rigorous patterns of those (early) days – the cubic boxes with asymmetric window arrangements so characteristic of the twenties.”

Selections for the 1952 exhibit depicted hallmarks of the style recognized in numerous commercial and civic buildings of today: symmetrical, often blocky massing, repetitive structural framework expressed in steel or concrete, continuous bands of windows that wrap around building façades, the use of spandrels to highlight a contrasting material of steel or colored glass, and most critically, the rejection of applied ornamentation.

One San José building was chosen for the 1952 exhibit and book: San José High School (now San José High Academy – a City Landmark) designed by Ernest J. Kump, Jr. in 1952. The school buildings feature façades expressed as repetitive bands of horizontal windows punctuated only by projecting steel frames, with colored spandrel glass. Kump’s design, located in SNI 6, is

a hallmark of the International Style (see below).171 Other San José examples of the International Style include the San José Civic Center buildings (1957), as well as several fire stations constructed during the 1940s and 1950s, such as Fire Station No. 1 (1951, Binder & Curtis, eligible for the National and California Registers, Candidate City Landmark).

\textit{International Style: Character-Defining Features}

- Blocky massing
- Horizontal bands of flush-mounted windows
- Contrasting spandrels of metal or colored glass
- Flat roofs
- Expressed structural system in steel and concrete
- Lack or absence of applied ornament
- Square building corners, often expressed as windows

Two examples of the International Style: on the left, the Dole Headquarters Building on East Virginia Street (Structure of Merit – SNI 13); on the right, San José High Academy on North Twenty-Fourth Street (City Landmark – SNI 6). The Dole Headquarters Building features the squared window corner and ribbons of windows that are hallmarks of the International Style. Ernest J. Kump, Jr.’s San José High Academy was featured in the 1952 exhibit and book, \textit{Built in USA: Post-war Architecture}. \textit{Photos: PAST Consultants, LLC}

171 Hitchcock, \textit{Built in USA: Post-war Architecture}, 78-79.
Commercial Modern (ca. 1945–1975):

The Commercial Modern Style refers to the more common commercial buildings utilizing Modernist design principles. These buildings adapted the primary tenets of Miesian architecture, a term used to describe buildings designed in the character of the glass and steel buildings pioneered by such visionary modern architects as Mies van der Rohe. Typically, these buildings feature wide expanses of glass set within steel frames, often on a base of concrete or steel columns.\(^{172}\) The modular steel structural systems could be adapted to fit the many applications of commercial architecture which required open expanses of glass for display. Typically, the display windows of the structure rest on a base of Roman (elongated) brick and/or concrete. Commercial Modern buildings use sparse, if any decoration. Instead, they defer to the clean lines created by the steel and glass structure. Decoration normally takes the form of large letters communicating the type of business prominently displayed on the building itself, or in large free-standing signs on the site to attract passing motorists (see image below).

In San José, the Commercial Modern Style is found along numerous automobile commercial strips, particularly along the major arterial entries to and from San José, including North First Street, West San Carlos Street, and Alum Rock Avenue.

Commercial Modern: Character-Defining Features

- Horizontal, angular massing
- Flat or low-pitched roofs
- Extensive use of glass, commonly set within flush-mounted steel or aluminum frames
- Expressed structural system
- Large commercial advertising mounted directly to building
- Large, free-standing advertising signs located prominently along the road
- Use of modern cladding materials, such as Roman brick, porcelain enamel, ceramic tile, prismatic glass, and glass block

This Commercial Modern building at 477 South Market Street (SNI 11) displays wide expanses of glass and a ceramic tile base. *Photo: PAST Consultants, LLC*

Commercial Modern adaptation to a curved corner site, at intersection of West San Carlos Street and Bascom Avenue (SNI 2). *Photo: PAST Consultants, LLC*
Corporate Modern (ca. 1955-1975):

Much like the Commercial Modern buildings already mentioned, the Corporate Modern Style describes buildings that apply Miesian architectural principles to large-scale corporate or civic projects. The term “glass box” adequately describes many of these buildings, which were influenced by architects such as Mies van der Rohe, Philip Johnson, and Skidmore Owings and Merrill, all of whom have designed such structures. The primary design principle of these buildings is the expression of structure applied as a module in either steel or concrete. Set within this module is the glass panel, the entire composition often being a repetitive pattern of steel and glass. A variant of the “glass box” appears as a large concrete “box” with virtually no ornamentation other than advertising for the commercial enterprise occupying the building. With both variants, overall lack of applied ornamentation is another fundamental design principle; the structure and its material serve as both form and ornament. 174

In San José, the style is mostly reflected in the large financial buildings constructed for the banking industry, such as the Wells Fargo Building, constructed in 1972 for the Park Center Redevelopment Project.

Wells Fargo Building, constructed as one of the anchoring buildings of the Park Center Redevelopment Project in 1972, viewed from the Plaza. Photo: PAST Consultants, LLC

Corporate Modern: Character-Defining Features

- Large rectangular massing
- Flat or low-pitched roofs
- Steel or concrete structure as primary expression of the building
- Horizontal bands of windows set within the structural module
- Alternate design of large concrete volume with little or no fenestration
- Building tower set back from the street in a landscaped plaza
- Tower frequently set atop a multi-story base framed by plain concrete or steel columns
- Overall absence of applied ornamentation, with the exception of corporate advertisement signs mounted directly to building

Corporate Modern variant, located at 1075 East Santa Clara Street (SNI 6), and expressed as large volumes of concrete set within a plaza off of the street. *Photo: PAST Consultants, LLC*
New Formalism (ca. 1955–1975):

Developed as a reaction to the perceived repetitive nature of the International Style and the “glass box” of the Corporate Modern Style, New Formalism sought to return elegance or beauty to architecture. Also referred to as Neo-neo-Classicism, New Formalism added stylized architectural elements such as repetitive arcades or full-height columns around buildings to return traditional (though highly stylized) architecture to the building’s design. Typically, the building was capped with a large projecting cornice, expressed merely as a slab. The style also incorporated architectural screens to link the building to its site. A classic example of New Formalism, designed by Philip Johnson with the firm of Harrison and Abramovitz and completed in 1968, is the Lincoln Center for the Performing Arts in New York City.\(^\text{175}\)

Edward Durell Stone designed one of the most publicized examples of New Formalism found in San José: the Wells Fargo Bank building shown below.

Wells Fargo Bank, designed in the New Formalism Style by Edward Durell Stone in 1965. It is located at West Hedding Street and the Alameda. *Photo: PAST Consultants, LLC*

New Formalism: Character-Defining Features

- Symmetrical plan
- Heavy overhanging roof slab
- Full-height columns of steel or concrete connecting the roof slab to the site
- Arcade of stylized arches and plain columns at base of building
- Cast stone or concrete block screens linking the building to its site
- Building tower set back from the street in a landscaped plaza
- Building expressed as tower of steel
- Presence of stylized ornamentation

New Formalism Style buildings at Santa Clara and 9th streets (SNI 16, on the left), and the San José Water Company Building on West San Carlos Street and Bascom Avenue (SNI 2, on the right). Photos: PAST Consultants, LLC
Googie (ca. 1950–1965):

Utilized during the post-war boom period of commercial architecture, Googie describes buildings constructed using futurist architectural elements, designed to address the automobile culture that proliferated during the era of suburbanization. Much like the influence of locomotive and ocean liner designs of the 1920s, groundbreaking advances in air and space technology inspired the swooping futurist shapes of Googie architecture. Named after the John Lautner-designed Googie’s Coffee Shop (1949) in Los Angeles, the term came into use after editor Douglas Haskell’s article on the style appeared in the February 1952 issue of *House and Home* magazine. In a new age charted by the automobile and fueled by unprecedented levels of consumerism, the striking forms of Googie architecture served their purpose well.

Space-age shapes, often incorporating huge electric and neon signs, proliferated on all manner of automobile-related commercial establishments, from drive-in restaurants to gas stations, automobile repair facilities, motels and shopping strips. In San José, Googie architecture is present along many of the automobile-oriented commercial arterial streets, such as West San Carlos Street, Alum Rock Avenue, and Bascom Avenue. A typical example appears below.

Western Appliance on West San Carlos Street (SNI 2) with futuristic road sign. *Photo: PAST Consultants, LLC.*

177 *Id.* at 68.
Googie: Character-Defining Features

- Abstract, curvilinear or stylized organic shapes
- Multi-story sweeping and soaring lines
- Exaggerated rooflines in steel or concrete, often in repetitive folded or curvilinear patterns
- Large expanses of glass in primary building, set within flush-mounted steel or aluminum frames
- Use of modern materials of steel, concrete, porcelain enamel, ceramic tile, prismatic glass, and glass block
- Space-age motifs of rockets and aircraft
- Prominent signage, integrated with the building design, or as a large free-standing composition. Signage often electrified with swooping designs in neon.

Two examples of Googie designs. At the left, the City Center Motel sign, on South First Street (SNI 11). On the right, the Associated Oil Service Station (1951), with soaring rooflines. The station is located at 510 East Santa Clara Street (SNI 16) and listed on the City Inventory. Photos: PAST Consultants, LLC.
Brutalism (ca. 1960-1975):

Although the exact origin of the term “Brutalism” continues to be debated, English architect Peter Smithson is given credit for coining the phrase in 1954. In addition, the work of famed Swiss architect Le Corbusier is also forever linked with the origin and greatest expression of the style. Like so much Modernism, Brutalism endeavored to shed all preconceived notions of architectural style or traditional ornamentation in favor for a completely honest expression of a building’s function through form and materials.\(^\text{178}\) What resulted in the United States, particularly with the work of William Wurster, was a building designed in a series of regular, blocky masses, with concrete (and sometimes brick) being the primary structural material. Since material was intended to communicate its function honestly, decoration relied on the patterns created by the wood formwork used for the construction of the concrete.\(^\text{179}\) Both the academic and materials approach to Brutalism made the style applicable to a range of educational and civic buildings in the United States.

In San José, Brutalist buildings can be found on college campuses and in several civic applications. The 1972 Student Union building at San José State University, designed by famed Modernist architect Ernest J. Kump, Jr., employs both brick and concrete in the design.

\[\text{Image: Student Union Building, San José State University (SNI 16). Photo: PAST Consultants, LLC.}\]

\(^{178}\) Pehnt, Encyclopedia of Modern Architecture, 60. Pehnt notes: “either Alison Smithson or the Smithson’s family friend Guy Oddie (who used to call Peter Smithson ‘Brutus’) was the first person to utter the phrase The New Brutalism.”

\(^{179}\) Id. at 63. The book notes that “The fundamental aim of Brutalism at all times has been to find a structural, spatial, organizational and material concept that is ‘necessary’… to some particular building, and then express it with complete honesty in a form that will be a unique and memorable image.”
The former Dr. Martin Luther King, Jr. Main Library was completed in 1970 and designed by Norton S. Curtis and Associates. The son of Ernest Curtis of the prolific local architectural firm Binder & Curtis, Norton S. Curtis combined elements of New Formalism with a completely frank example of Brutalism. Set within and viewed from the plaza, structure and concrete provide all the decoration. The tripartite design utilizes a base expressed as a series of arches which spring from the recessed first-floor level below. The building’s middle section creates a regular pattern of light and shadow, expressed as massive concrete projections framing recessed concrete panels. A projecting, massive cornice in the New Formalist vein, resting above a horizontal band of windows, completes the tripartite design.

Brutalism: Character-Defining Features

- Structure expressed as massive, blocky forms
- Rough concrete (sometimes with brick) as primary structural material
- Façades composed of regular, large forms
- Windows as voids in the larger concrete massing
- Flat roofs
- Building often raised and set within a plaza

Organic (ca. 1960 - 1975):

With origins in Europe, this style is perhaps best associated with the work of Frank Lloyd Wright, who postulated his theories of Organic Architecture in his 1939 book, *An Organic Architecture – The Architecture of Democracy*, as well as in the 1950 *Towards an Organic Architecture*. The primary tenet of this style is that the entire building, as well as its site, was designed as an integrated ensemble and in harmony with the surrounding environment. In its theoretical sense, Organic Architecture seeks to harmonize the individual with his or her surroundings through the process of comprehensive and integrative building design. Although the style can take on angular or geometric forms, Wright’s most noteworthy design in the Organic Style is the Guggenheim Museum in New York City.181

In San José, the most notable example of this building style is the Center for the Performing Arts (1972, Candidate City Landmark), located at 241-271 Park Avenue. Part of the Park Plaza Redevelopment Project, the building’s curvilinear design is executed by Taliesin Associated Architects, a firm that carried on Wright’s Organic design principles. Reminiscent of the Guggenheim, the building is actually a prototype used by the Taliesin Associated Architects in community centers across the United States.182

Center for the Performing Arts shortly after completion in 1972. *Photo: Taken from “Metamorphosis: Redevelopment in San José, 1973,” courtesy History San José.*

182 Dill Design Group, *State of California DPR Form 523: San José Center for Performing Arts.*
Organic: Character-Defining Features

- Curvilinear massing and ornamentation
- Asymmetrical composition
- Expansive use of glass to reduce separation from inside and outside of building
- Flat or low-pitched roofs
- Complete integration of design elements, from massing to ornamentation
- Building set within a landscaped plaza often with fountains
- Use of natural materials of wood, brick, stone, or concrete rendered into parabolic or curvilinear forms

A current photograph of the Center for the Performing Arts (1972, Candidate City Landmark), with its curvilinear form and striking lollipop windows. *Photo: PAST Consultants, LLC*
IV. HISTORIC THEMES AND ASSOCIATED PROPERTY TYPES

Introduction and Terminology

National Register Bulletin Number 15: How to Apply the National Register Criteria for Evaluation describes the established and accepted process for the evaluation of a historic resource. Historic contexts “are historical patterns that can be identified through consideration of the history of the property and the history of the surrounding area.”\(^{183}\) The determination of the historic context for a given resource is the primary step in evaluation and nomination. The City of San José has established broad historic contexts previously, based on the accepted context statement *Historical Overview and Context for the City of San José*, written in 1992 by Archives and Architecture. This document establishes two historic contexts for San José Modernism: Inter-War Period (1918-1945) and Industrialization and Suburbanization (1945-present). A particular resource’s period of significance is the “span of time in which a property attained the significance for which it meets” the relevant local, California Register or National Register criteria.\(^{184}\) Lastly, a historic theme “is a means of organizing properties into coherent patterns based on elements such as environment, social/ethnic groups, transportation networks, technology, or political developments that have influenced the development of an area during one or more periods of prehistory or history.”\(^{185}\)

For the San José Modernism historic context statement, resources built between 1935 and 1975 have been organized into six historic themes:

1. Retail Development
2. Corporate/Industrial Development
3. Civic Development
4. Educational Architecture
5. Religious Architecture
6. Residential Development

\(^{184}\) U.S. Department of the Interior, National Park Service, *National Register Bulletin Number 16A: How to Complete the National Register Registration Form*, Appendix IV, 3. This appendix provides a useful glossary of National Register terms.

The following example illustrates how this process works. The Associated Oil Service Station (below), built in 1951 at 510 East Santa Clara Street (SNI 16), was constructed to support the booming automobile-based culture that developed after World War II. The building was used as a company gas station until the early 1970s. The historic context for this property would be Industrialization and Suburbanization during the A.P. Hamann tenure; the property’s period of significance would be 1951-1973 (end date approximate). The historic theme for this property would be retail development, and the property type would be a commercial building, of the stand-alone retail subtype.

Historic Themes and Associated Property Types

The following section describes the six chosen themes for San José Modernism and provides property types and appropriate examples for each theme.

Retail Development

San José’s Modernist commercial buildings are found along the numerous arterial roadways and expressways that weave throughout the City. Commercial buildings dating before 1945, the period of industrialization and suburbanization, are found on the arterial roads constructed before World War II, primarily along Santa Clara, San Carlos, First, Fourth, and Thirteenth streets. However, individual examples remain scattered on lesser streets, or those streets that lost their traffic volume when construction of the integrated system of arterials, county expressways and freeways occurred in the 1950s and 1960s. Where the arterials and county expressways opened the door for the intense suburbanization of San José after World War II, commercial buildings in Modernist styles abound.

Property Type: Commercial Building

Retail Storefront Subtype:

In San José, this is primarily a pre-1945 subtype and includes stand-alone buildings constructed before automobile related conveniences, such as off-street parking and drive-through windows were created. The storefront is a detached building, set right upon the sidewalk with large display windows to attract passersby. Buildings of this subtype typically are designed in the Streamline or International styles.

![435 Park Avenue (SNI 3)](image1)

Stand-Alone Retail Subtype:

A common subtype constructed to accommodate the automobile, this subtype is set alone and off the street, with parking accommodations in front. Less commonly, the building is set on the street with parking in the rear. Examples of function types include drive-in banks, restaurants, service stations, grocery stores, theaters and bowling alleys. Buildings of this subtype frequently are designed in the Streamline Moderne, Commercial Modern, and Googie styles.

![W. San Carlos & Bascom Ave. (SNI 2)](image2)

Retail Strip Subtype

Constructed mostly in the 1940s and 1950s, this subtype consists of a series of attached buildings, frequently with a larger or more impressive building at one or both ends to attract passing motorists. Sometimes described as a “strip mall,” this subtype contains off-street parking and generally is designed in the Streamline Moderne, Commercial Modern, or Googie styles.

![349 South Bascom Avenue (SNI 2)](image3)
Professional Office Subtype

Intended as small offices or groups of offices for doctors, lawyers, insurance or real estate agents and other professionals, these buildings were constructed throughout San José in the 1950s and 1960s in an interesting array of Commercial Modern styles. A cluster of this building type is located along Meridian and Park avenues (SNI 2).

Corporate/Industrial Development

The Corporate/Industrial Development theme features large, stand-alone structures or groupings of structures for corporate or industrial purposes. The greatest proliferation of corporate function types in San José are banks, many of which were designed by significant local or regional architects. Corporate buildings are commonly set within a plaza, which includes open space and landscaping. Industrial function types include factories and campuses, the IBM complex on Cottle Road being a strong example of this latter function type. Generally, buildings within this theme are constructed on a grand scale with high budgets and complex architectural programs with high design quality.

Property Type: Commercial Building

Large Office Building Subtype

A building subtype embraced by the most important Modernist architects of the time, the large office building subtype found in San José is frequently a bank, with one example designed by Edward Durell Stone (right). The Wells Fargo and Bank of America (1971) buildings designed for the Park Center Plaza project are additional examples.

Wells Fargo at W. Hedding St. and The Alameda
Photo: PAST Consultants, LLC
Industrial Building Subtype

Buildings of this function type include factories, corporate headquarters, or corporate campuses occupied by a single commercial entity. Campuses designed for Silicon Valley companies are part of this subtype, as are canneries or other retail food or manufacturing plants. In San José, these buildings display Streamline Moderne or International styles.

Dole Corporation, 160 E. Virginia St. (SNI 13)
Photo: PAST Consultants, LLC

Civic Development

With the City’s large investment in San José civic buildings during the six-year capital improvement programs begun in 1948, and particularly during the tenure of City Manager A.P. Dutch Hamann, civic buildings designed in Modernist styles exist throughout San José. Public buildings were constructed during earlier periods, such as the 1936 San José Civic Auditorium. However, the unprecedented level of growth during A.P. Hamann’s time resulted in a number of impressive projects requiring a significant capital investment. Examples of three noteworthy projects are the Civic Center and associated City Hall (1957), the former Dr. Martin Luther King, Jr. Library (1970) and the Center for the Performing Arts (1972, Candidate City Landmark). Another significant function type that proliferated during the Modernist period is the fire station; numerous fire stations constructed during Hamann’s tenure remain in use today.

Property Type: Civic Building

Government Building Subtype

Although not located in a Strong Neighborhood, the buildings designed for the Civic Center provide a cohesive group of structures, set within a park-like setting. The flagship building of the group is San José City Hall, completed in 1957.

The 1957 San José City Hall
Photo: PAST Consultants, LLC
Fire Station Subtype

San José invested significantly in public safety improvements, achieving the goal of improving the City’s fire rating to enhance public safety and reduce insurance premiums for its residents. Many of these fire stations remain in use today, scattered throughout the Strong Neighborhoods. The stations frequently were designed in an austere hybrid Streamline and International Style.

Educational Architecture

The City made a significant investment in public schools, both due to the 1933 Field Act and the unprecedented demand for schools during the City’s rapid expansion and suburbanization in the 1950s and 1960s. Higgins & Root Associates, AIA designed a number of the Modernist public schools, many of which remain in use throughout the Strong Neighborhoods. Noted Modernist architect Ernest J. Kump, Jr. designed one public school, now San José High Academy, a collection of buildings in striking International Style that won him accolades in 1952. The complex of school buildings remains today.

San José has been regarded as a regional leader in college education for a long time, and it is home of the oldest public school of higher education in California. First started as a Normal School in 1857, San José State University has evolved into one of California’s leading liberal arts and engineering schools. Leading Modernist architects such as Ernest J. Kump, Jr. designed buildings on the San José State University campus, including the Brutalist Style Student Union (1972). In 1954, the Board of Education approved the San José City College’s site plan, which included an administration building, men’s gymnasium, library, three science laboratories, plus football and baseball fields and a track. Another extensive construction phase occurred in the 1960s, with the prolific firm of Higgins & Root Associates, AIA designing the handsome student affairs building, which remains in use today.
Property Type: Education Building

Public School Building Subtype

The 1933 Field Act established certain standards for public school construction, but architects showed their design skills by introducing innovative ideas in space planning and by experimenting with architectural details. Many schools were designed in the International Style, creatively integrating landscaping and open recreation areas. Ernest J. Kump, Jr.’s San José High Academy (1952), a City Landmark, was featured in a book and exhibit by the Museum of Modern Art in New York City.

The 1952 San José High Academy (SNI 6)
Photo: PAST Consultants, LLC

College School Building Subtype

Buildings on the San José State University campus were designed in a medley of Modernist styles, including elements of the International, Brutalism, and New Formalism styles. Ernest Kump, Jr. contributed his Brutalist Student Union building to San José State University in 1972. Higgins & Root Associates, AIA designed buildings on the San José City College campus.

Student Union, San José State University (SNI 16)
Photo: PAST Consultants, LLC

Religious Architecture

The unprecedented church construction in San José during the late 1940s and 1950s was tied directly to post-World War II prosperity and the huge influx of residents within the City’s expanding borders. An August 1955 article in the *San José Mercury News* predicted that the years 1953-1955 might be referred to as the “golden age” of San José church construction because of their sheer number and cost, with most of the new edifices considered “handsome enrichments of the community.” From about 1950 to 1955, 74 church buildings (including
sanctuaries, schools and parish homes) were built in Santa Clara County. The San José Mercury News reported that churches countywide saw membership increases averaging 108%, but around 300% for new suburban churches near recently completed housing developments.187

Due in part to the cost, as well as the new minimalist aesthetic of the time, Modernist churches featured little ornamentation. Instead, a local designer at the time noted that structural members create the structure’s beauty and that “pure ornamentation is sparingly, judiciously used.”188 Many congregations undertook long-term building plans that focused on the family as a whole, often building classrooms and auditoriums first, and a main sanctuary later.189 San José churches following this pattern included the Calvary United Methodist Church of San José (circa 1956-1957) at 729 Morse Street and Naglee Avenue, designed by Higgins & Root Associates, AIA. Initial plans called for administration offices, educational buildings, youth center, social room, kitchen and church parlor; the master plan also envisioned a new sanctuary forming an open court with the rest of the complex.190

Property Type: Religious Building

Churches in San José sprang up in the former orchards throughout the annexed lands of A.P. Hamann’s tenure. Deliberately designed in subdued Modernist styles, it is difficult to classify these edifices into the twelve styles described previously. Primarily architect designed, each church should be evaluated on its own individual merit, before assigning a Modernist style to it.

187 “74 Church Buildings Completed in Past Five Years,” San José Mercury News, January 15, 1956, 23P.
189 Ibid.
Residential Development

Residential development was relatively slow in San José during the early years of this study’s time period. With World War II bringing a halt to residential construction, the earliest FHA homes exist in San José as infill lots in older neighborhoods surrounding the City center. Individual streets lined with the early FHA houses also exist in the early annexations that predate the Hamann tenure.

However, the vast agricultural land surrounding the pre-war City experienced tremendous development as the flood of annexations occurred in the 1950s and 1960s. During this period, houses in virtually every ranch style were constructed, from the early 1950s austere Tract Ranch to the sprawling Custom Ranch styles (with California Style or Contemporary Style trimmings). The Post-and-Beam Style, used by Joseph Eichler and his contemporaries, also exists in the City. However, unlike other California cities that boomed during this same time period, San José’s annexations were somewhat small, often less than 100 acres. Large, planned suburban communities only developed in larger annexations to the south and east of the city, such as in the Strong Neighborhoods of West Evergreen (SNI 18) and Edenvale (SNI 5). When these neighborhoods are examined, ranch house styles will vary within a two to five block radius. On one street California Ranch houses appear; several blocks away Contemporary A-frame Tract Ranch houses sprout up. The bulk of residential houses fall into the Tract Ranch Style, with delightful Modernist details.

An example of this form of small scale suburban development is Tract Number 1966, which included Lots 6 & 7 of the Phelps Subdivision. The development is located in SNI 1 and is bounded by Williams Road to the north, Rhoda Drive to the south, Boynton Avenue to the east and Keltner Avenue to the west, a Tract of three suburban blocks. In 1957, the civil engineering firm of Waters, Ruth & Gong laid out this subdivision of 91 lots and chose an unusual combination of Modernist designs in their Tract Ranch houses. As was typical with subdivision construction during the 1950s, the same house plan was employed, with placement of the garage, front entries, or architectural detail varied in subtle ways to dispel the monotony of the Tract
Ranch subdivision. As seen in the below photographs, two designs were chosen for Tract Number 1966 utilizing interesting Modernist architectural details, including a dramatic, projecting A-frame to highlight the street-facing gable end. 191

Tract Ranch designs on Boynton Avenue (SNI 1). To the left, abstract panels adorn garage doors and façade windows, while the rooflines feature a shed roof detail below the gable ends. Across the street, the house to the right varies the subdivision’s composition with its dramatic A-frame on its left gable end.

Photos: PAST Consultants, LLC

Property Type: Residential Building

Early FHA House Subtype

The simplified early FHA house appears as infill development throughout the Strong Neighborhoods closest to the pre-war City limits. They are designed in the Minimal Traditional Style.

Minimal Traditional House on Melrose Avenue (SNI 7)

Photo: PAST Consultants, LLC

Tract Ranch House Subtype

The Tract Ranch is designed in all of the residential Modernist styles mentioned previously, including California Ranch, Contemporary Ranch and Post-and-Beam.

Tract Ranch House on Welch Avenue (SNI 1)

Photo: PAST Consultants, LLC

191 Information taken from Subdivision Map for Tract No. 1966, by Leo W. Ruth, Civil Engineer, 1957, courtesy of History San José, which has numerous books of Tract maps and plans for the myriad annexations during the 1950s and 1960s. These maps are currently being organized into a database, with about half of them now catalogued.
V. EVALUATION OF SAN JOSÉ MODERNIST RESOURCES

Historic resources may be designated on the federal, state or local level. Generally, to be eligible for listing, a resource must meet the established criteria for significance and retain enough historic integrity to convey that significance. This chapter describes the criteria for listing in the National Register of Historic Places, California Register of Historical Resources, and under Chapter 13.48 of the City of San José Municipal Code.

National Register of Historic Places

The National Historic Preservation Act of 1966 authorized the Secretary of the Interior to create the National Register of Historic Places. Districts, sites, buildings, structures, and objects significant in American history, architecture, archeology, engineering and culture are eligible for listing if they meet at least one of four criteria. Eligible resources are those

A. That are associated with events that have made a significant contribution to the broad patterns of our history; or
B. That are associated with the lives of persons significant in our past; or
C. That embody the distinctive characteristics of a type, period, or method of construction, or that represent the work of a master, or that possess high artistic values, or that represent a significant and distinguishable entity whose components may lack individual distinction; or
D. That have yielded, or may be likely to yield, information important in prehistory or history.

Eligible resources must also retain sufficient integrity of location, design, setting, materials, workmanship, feeling, and association to convey the relevant historic significance. The seven aspects of integrity are described at the end of this chapter.

193 36 C.F.R. § 60.4.
In general, cemeteries, birthplaces, or graves of historical figures; properties owned by religious institutions or used for religious purposes; structures that were moved from their original locations; reconstructed historic buildings; properties primarily commemorative in nature; and properties that have achieved significance within the past fifty years are considered ineligible for listing in the National Register. However, such properties will qualify if they are integral parts of districts that do meet the criteria of if they fall within the following categories:

(a) A religious property deriving primary significance from architectural or artistic distinction or historical importance; or

(b) A building or structure removed from its original location but which is significant primarily for architectural value, or which is the surviving structure most importantly associated with a historic person or event; or

(c) A birthplace or grave of a historical figure of outstanding importance if there is no appropriate site or building directly associated with that person’s productive life; or

(d) A cemetery which derives its primary significance from graves of persons of transcendent importance, from age, from distinctive design features, or from association with historic events; or

(e) A reconstructed building when accurately executed in a suitable environment and presented in a dignified manner as part of a restoration master plan, and when no other building or structure with the same association has survived; or

(f) A property primarily commemorative in intent if design, age, tradition, or symbolic value has invested it with its own exceptional significance; or

(g) A property achieving significance within the past 50 years if it is of exceptional importance.\(^\text{194}\)

\(^{194}\) 36 C.F.R. § 60.4.
California Register of Historical Resources

A resource is eligible for listing in the California Register of Historical Resources if it

1. Is associated with events that have made a significant contribution to the broad patterns of California’s history and cultural heritage.
2. Is associated with the lives of persons important in our past.
3. Embodies the distinctive characteristics of a type, period, region, or method of construction, or represents the work of an important creative individual, or possesses high artistic values.
4. Has yielded, or may be likely to yield, information important in prehistory or history. 195

The California Code of Regulations notes that integrity is the authenticity of an historical resource’s physical identity evidenced by the survival of characteristics that existed during the resource’s period of significance. Resources eligible for listing in the California Register must retain enough of their historic character or appearance to be recognizable as historic resources and convey the reasons for their significance.

The same seven aspects of integrity are considered when evaluating resources for listing in the National Register and California Register: location, design, setting, materials, workmanship, feeling, and association. Alterations over time or historic changes in use may themselves be significant. However, resources that may not retain enough integrity to meet National Register criteria may still be eligible for listing in the California Register.

A moved building, structure, or object may be listed in the California Register if it was moved to prevent its demolition at its former location and the new location is compatible with the resource’s original character and use. The resource should retain its historic features and compatibility in orientation, setting, and general environment. A resource less than fifty years old may be considered for listing in the California Register if it can be demonstrated that

195 California Public Resources Code § 5024.1(c).
sufficient time has passed to understand its historical importance. A reconstructed building less than fifty years old may be eligible for listing if it embodies traditional building methods and techniques that play an important role in a community’s historically rooted beliefs, customs, and practices, such as a Native American roundhouse.196

City of San José

The San José Municipal Code allows for the designation of Landmarks, Historic Districts, and conservation areas.

Landmark

A Landmark can be any of the following resources “which have a special historical, architectural, cultural, aesthetic or engineering interest or value of an historical nature”: (1) an individual structure or portion thereof; (2) an integrated group of structures on a single lot; (3) a site, or portion thereof; or (4) any combination thereof.197 The Municipal Code defines “historical, architectural, cultural, aesthetic, or engineering interest or value of an historical nature” as “a quality that derives from, is based upon, or related to any of the following factors”:

1. Identification or association with persons, eras or events that have contributed to local, regional, state or national history, heritage or culture in a distinctive, significant or important way;
2. Identification as, or association with, a distinctive, significant or important work or vestige:
 a. Of an architectural style, design or method of construction;
 b. Of a master architect, builder, artist or craftsman;
 c. Of high artistic merit;
 d. The totality of which comprises a distinctive, significant or important work or vestige whose component parts may lack the same attributes;

196 California Code of Regulations, Title 14, Sections 4852(c) and (d).
197 San José Municipal Code Chapter 13.48, Section 13.48.020(C).
e. That has yielded or is substantially likely to yield information of value about history, architecture, engineering, culture or aesthetics, or that provides for existing and future generations an example of the physical surroundings in which past generations lived or worked; or

f. That the construction materials or engineering methods used in the proposed landmark are unusual or significant or uniquely effective.

3. The factor of age alone does not necessarily confer a special historical, architectural, cultural, aesthetic or engineering significance, value or interest upon a structure or site, but it may have such effect if a more distinctive, significant or important example thereof no longer exists.198

In evaluating proposed Landmarks, the San José Historic Landmarks Commission may consider a number of factors, including:

1. Its character, interest or value as part of the local, regional, state or national history, heritage or culture;
2. Its location as a site of a significant historic event;
3. Its identification with a person or persons who significantly contributed to the local, regional, state or national culture and history;
4. Its exemplification of the cultural, economic, social or historic heritage of the city of San José;
5. Its portrayal of the environment of a group of people in an era of history characterized by a distinctive architectural style;
6. Its embodiment of distinguishing characteristics of an architectural type or specimen;
7. Its identification as the work of an architect or master builder whose individual work has influenced the development of the city of San José;

8. Its embodiment of elements of architectural or engineering design, detail, materials or craftsmanship which represents a significant architectural innovation or which is unique.199

\textbf{Historic District}

A Historic District is “a geographically definable area of urban or rural character, possessing a significant concentration or continuity of site, building, structures or objects unified by past events or aesthetically by plan or physical development.”200

\textbf{Conservation Area}

The San José Municipal Code also allows for the designation of Conservation Areas. A Conservation Area is a geographically definable area of urban or rural character with identifiable attributes embodied by: (1) architecture, urban design, development patterns, setting, or geography; and (2) history.201 To qualify, a neighborhood or area must meet one or both of the following criteria: (A) The neighborhood or area has a distinctive character conveying: (1) a sense of cohesiveness through its design, architecture, setting, materials, or natural features; and (2) its history; and/or (B) The neighborhood or area reflects significant geographical or developmental patterns associated with different eras of growth in the city.202

\textbf{Historic Integrity}

The seven aspects of historic integrity are defined in \textit{National Register Bulletin 15: How to Apply the National Register Criteria for Evaluation}. Historic integrity is “the ability of a property to convey its significance,” and historic properties either retain their integrity or they do not. To retain integrity, a resource will always retain several and usually most of the seven aspects of integrity:

\begin{itemize}
\item 199 San José Municipal Code Chapter 13.48, Section 13.48.110(H).
\item 200 San José Municipal Code Chapter 13.48, Section 13.48.020(B).
\item 201 San José Municipal Code Chapter 13.48, Section 13.48.610.
\item 202 San José Municipal Code Chapter 13.48, Section 13.48.620.
\end{itemize}
1. **Location**: the place where the historic property was constructed or the place where the historic event occurred.

2. **Design**: the combination of elements that create the form, plan, space, structure, and style of a property.

3. **Setting**: the physical environment of a historic property.

4. **Materials**: the physical elements that were combined or deposited during a particular period of time and in a particular pattern or configuration to form a historic property.

5. **Workmanship**: the physical evidence of the crafts of a particular culture or people during any given period in history or prehistory.

6. **Feeling**: a property’s expression of the aesthetic or historic sense of a particular period of time.

7. **Association**: the direct link between an important historic event or person and a historic property.

Although the evaluation of whether a property possesses integrity may be subjective, it must be grounded in an understanding of the resource’s physical features and how they relate to the relevant historic significance. *National Register Bulletin 15* notes that the integrity evaluation can begin only after the evaluator understands the property’s significance: *why* the resource is significant (the designation criteria and the area of significance), *when* the resource is significant (its “period of significance”), and *where* it is important.

A resource need not be “frozen in time” to retain its historic integrity. Properties evolve over time, and those changes themselves may have acquired historic significance. But the resource must still have the essential physical attributes that identify it as the historic property.\(^{203}\)

San José City Landmarks: 1935-1975204

Very few resources built in San José between 1935 and 1975 have been designated as City Landmarks. The following list includes only resources designated at the local level. Properties listed in or determined eligible for listing on the National or California Registers are not listed if they are not also designated as City Landmarks.

<table>
<thead>
<tr>
<th>Resource Name</th>
<th>Street Address</th>
<th>Period*</th>
<th>Theme**</th>
</tr>
</thead>
<tbody>
<tr>
<td>Civic Auditorium (1934-1936)</td>
<td>145 W. San Carlos St.</td>
<td>IW</td>
<td>G & PS</td>
</tr>
<tr>
<td>San José Academy (1952)</td>
<td>275 Twenty Fourth St.</td>
<td>I&S</td>
<td>R & E</td>
</tr>
<tr>
<td>The Orange (c. 1936)</td>
<td>48 S. Capitol Ave.</td>
<td>IW</td>
<td>C & T</td>
</tr>
<tr>
<td>Babe’s Muffler Service</td>
<td>808 The Alameda</td>
<td>I&S</td>
<td>C&T</td>
</tr>
<tr>
<td>Antioch Baptist Church</td>
<td>268 E. Julian St.</td>
<td>I&S</td>
<td>R&E</td>
</tr>
<tr>
<td>San José National Bank</td>
<td>101 W. Santa Clara St.</td>
<td>IW/I&S</td>
<td>C</td>
</tr>
<tr>
<td>IBM Building (1949)</td>
<td>99 Notre Dame Ave.</td>
<td>I&S</td>
<td>M&I</td>
</tr>
<tr>
<td>Renzel Residence (1939)</td>
<td>120 Arroyo Way</td>
<td>IW</td>
<td>A&S</td>
</tr>
</tbody>
</table>

* **Historic Period:**

 S: Spanish (1777-1822)
 M: Mexican (1822-1845)
 EA: Early American (1846-1870)
 H: Horticulture (1870-1918)
 IW: Inter-War (1918-1945)
 I&S: Industrialization and Suburbanization (1945-present)

** **Historic Theme:**

 A&S: Architecture and Shelter
 AG: Agriculture
 M&I: Manufacturing and Industry
 RE&EM: Resource Exploitation and Environmental Management
 C&T: Communication and Transportation
 C: Commerce
 G&PS: Government and Public Services
 R&E: Religion and Education
 S,A,&R: Social, Arts, and Recreation

204 The City of San José’s list of “San José Designated Historic City Landmarks” is current as of June 1, 2009; the “City of San José Historic Resources Inventory” is current as of June 4, 2009. The City assigns historic periods based on the framework established in Glory Anne Laffey’s *Historical Overview and Context for the City of San José* (1992), the accepted contextual history for the entire City of San José.
VI. LOCAL PRACTITIONERS

Introduction
This chapter introduces some of the architects, landscape architects, builders, contractors, developers, engineers, surveyors, and public artists who were active in San José during the Modernism period. This chapter is intended neither to be all-inclusive, nor to provide a complete biographical or project history of a person or firm. Rather, it highlights some major accomplishments of local practitioners, based on available documentation. The alphabetical list of local practitioners is followed by narrative descriptions of the individuals and firms. This information should be updated as scholarly work on San José Modernism continues.

ARCHITECTS

Aaron G. Green Associates, Inc. Donald Francis Haines & Associates
Armet and Davis Associates
Bamburg, Marvin A. Ehrlich, Joseph
Bernardi, Theodore C. Emmons, Donn
Binder, William Emmons, Frederick E.
Binder & Curtis Ernest Kump Associates
Bolles, John S. Feldheym, Leonard
Booth, Corwin L. Feldheym, DeGrange and Reid
Bruno, H. John Franklin & Kump
Bruno & Kobashi Franklin, Kump & Falk
Burdick, Norman Fred Marburg, AIA
Butner, Charles E. Geauque, G.W.
Churchill, William A. Goudie, Clyde D.
Churchill-Zlatunich, AIA Goudie & Griffin
Clark, Birge M. Green, Aaron G.
Clark, Stromquist, Potter, Ehrlich Griffin, DeWitt J.
 Partnership Griffin Joyce Associates, Inc.
Conrad H. Stieber & Associates, AIA, Gross, Kurt
 Architects Haines, Donald Francis
Corwin Booth & Associated Architects Haines Tatarian Ipsen & Associates
Curtis, Ernest N. HTI, Inc.
Curtis, Norton S. Hedley, James
DeGrange, Allen Hedley Jr., William W.
Hedley & Stark
Higbie, Howard W.
Higgins, William L.
Higgins & Root Associates, AIA
Ikeda, George
Ipsen, Earle C.
Jaekle, Donnell E.
James Hedley & Associates
John S. Bolles & Associates
Jones, A. Quincy
Jones & Emmons
Kensit, H.D.
Knoll, A.H.
Kocher, George S.
Kreinkamp, Herbert A.
Kress, Edward W.
Kress & Gibson
Kress, Goudie and Kress
Kress & Winston
Kump Jr., Ernest J.
Kump & Falk
Kurt Gross, Fred Marburg, Architects
Loewy, Raymond
Logue Jr., Hollis
Marburg, Fred
Marburg-Churchill, AIA
Marvin Bamburg Associates Inc.
May, Clifford M.
MBA Architects
Norman Burdick, AIA and Associates
Norton S. Curtis & Associates
McKenzie, Charles S.
Meston, Stanley Clark
Myers, Edwin J.
Pflueger, John M.
Porter, Kal
Porter, Jensen, Hansen, Manzagol Architects
Potter, David Farington
Reid, Twain
Root, Chester O.
Ruth, Going and Curtis, Inc.
Shimamoto, George G.
Skidmore, Owings & Merrill

Sobey, Gifford E.
Steinberg, Goodwin “Goody”
Steinberg Group (The)
Stieber, Conrad H.
Stone, Edward Durell
Stout, Wallace R.
Stromquist, Walter S.
Taliesin Associated Architects
Tatarian, Zaven
Treseder, Frank C.
Walter, Alan M.
Ward, J. Francis
Ward & Bolles
Weeks, William H.
Wertheim & van der Ploeg
Whitmon, E.P.
William W. Hedley Jr. & Associates
Wurster, William W.
Wurster, Bernardi and Emmons, Architects
Wyckoff, Ralph
Young, Ron D.

LANDSCAPE ARCHITECTS

Baylis, Douglas
Folendorf, Robert
Martin, George
Williams, Edward Ames

BUILDERS, CONTRACTORS,
DEVELOPERS, ENGINEERS AND
SURVEYORS

A.E. Margherita and Sons, Inc.
Anderson, Oscar
Artificial Stone Works
Baldwin, H.
Barnhardt Construction
Barrett Construction Co.
Bartran, Paul W.
B.E.M. Co.
Bohannon, David D.
Blackwell, Jack
Blackwell, Ken
Blackwell Homes
Bogdanich Building Co.
Bohannon, David D.
Bohannon Development Company
Boitano, Fred D.
Borchers Bros.
Bothwell, Gordon
Bridges, H.A.
Bridges Construction Co.
Brundage, Charles R.
Caldwell, William C.
Caldwell’s Woodworking Shop
Calor Construction Co.
Camp and Sondeno
Campisi, Jimmy T.
Campisi Plastering
Caputo, Dan
Carl N. Swenson Company
Carpenter, G.S.
Century Concrete
Charles R. Brundage and Co. Land Development
Chin & Hensolt, Inc.
Cortelyou-Cole, Inc.
Crinklaw, Warren F.
D. Tomacci and Son
Daly Brothers
Dan Caputo Co.
David D. Bohannon Organization
Demmon-Hunter Co.
Domrose, G.L.
Donald L. Stone Homes
Doyle and Newell
Duc & Elliot Co.
E.A. Hathaway & Co.
Earl W. Heple Corp.
Edwards, Bruce C.
Eichler, Joseph
Eichler Homes
Eitzert Jr., Henry
Eitzert Sheet Metal Works
Elmo W. Pardini, Inc.

Feather, Laurice D.
Fletscher-Peterson
Frank Pisano Associates
G.L. Domrose and Sons
Ganiats Construction Inc.
George O. Nelson Contracting Co.
Gilroy Glass Co.
Goodnight, J. Dale
Gordon Bothwell Concrete Construction Co.
Gresham, Conrad
Gresham, Joseph N.
Gresham Construction Co.
Griffiths, Bud
Griffiths, James D.
Guerra, Michael
Guerra Realty Co.
Gurries, Richard M.
Gurries and Okamoto, Inc.
Haas & Haynie
Haggerty Jr., Frank
Hainer, John W.
Hapsmith Company (The)
Hathaway, Ernest A.
Heinrichs, Leroy A.
Heple, Earl W.
Herschbach, Robert C.
Herschbach, Robert D.
Herschbach, Thomas H.
Holmgren, Kenneth A.
Holseth, Gilbert H.
Hoyt, Frank L.
Hudson, Joseph A.
Hudson Co.
Hughes Construction Co.
Inland Empire Builders
James Construction Company
John Hainer Painting Co.
Kirk, Clarence H.
Kirk, Miriam E.
Kocher Construction Co.
L. Cedric Macabee Company
Lamb, N.A.
Larson, Roy

Page 109
San José Modernism
Historic Context Statement
PAST Consultants, LLC
June 2009

LeDeit, Camille F.
LeDeit Jr., Sylvain
LeDeit Glass and Mill, Inc.
Margherita, Anthony E.
Mark Thomas Co.
McInerney, Joseph
McKeon Construction Co.
Meyer, Oscar W.
Mozzzone, Joe
Napier, J. Donald
Nelson, George O.
Newell, Corwin
Newgren, Claude
Newgren, Einar
Newgren, John
Newgren, Lloyd
Newgren Brothers
Nielsen & Nielsen
Nishiura, Gentaro
Nishiura, Harry
Nishiura, Shinzaburo
Nishiura Construction
Ochs, W.J.
O.E. Anderson Co.
O’Neill, John James
O.W. Meyer Construction Co.
Pardini, Elmo W.
Pederson, Holger
Piazza, Salvatore
Piazza Lathing and Plastering Co.
Pisano, Frank
Pisano Brothers
Polizzi, Anthony
Reiter, J.J.
Roeder, Walter
Romani, Joseph J.
Romani Brothers Construction Company
Romani Brothers Plastering Company
Roof Structures, Inc.

Rosenbaum, Edward
Ryan, Edward F.
Sakura Construction Co.
Sanfilippo, Phil
Schulte, Henry L.
Schutte, Leo A.
Shottenhamer, E.
Shulman, Joseph
Starlite Homes
Stone, Donald L.
Stone & Schulte
Sunzeri, Vincent Joseph
Swenson, Carl N.
Technobuilders
Thomas, Charles Augustus
Thompson, W.C.
Tilson, Lionel
Tonkin, Robert W.
Wilkinson Construction Co.
Zaima, Paul
Zeller, Asa C.
Zisch, Nelson and Owen Co.

PUBLIC ARTISTS
Armento, Benny
Beamer, Scott
Bloch, Lucienne
Hollingsworth, Norman
Howard, Robert B.
Nissen, Robert
Power, Eugene J.
Power, Richard
Powers, Harry
Powers Pottery
Schafer, Ben
Schnittmann, Sascha S.
Woods, Gurdon
ARCHITECTS

Aaron G. Green Associates, Inc.

Based in San Francisco, Aaron G. Green Associates, Inc. has been in business for more than a half-century. Throughout his career, Aaron G. Green, FAIA (1917-2001) worked with Frank Lloyd Wright. After studying at the Chicago Academy of Fine Arts and The Cooper Union in New York, Green returned to his native Mississippi to practice architecture. He suggested that his new clients Stanley and Mildred Rosenbaum hire Frank Lloyd Wright to design their home in Florence, Alabama. Green contacted Wright and served as a liaison with Wright during the construction of the Usonian Style Rosenbaum House (1940, National Register of Historic Places). Green subsequently accepted the position Wright offered him at Taliesin West, but later left to serve in World War II. After the war, Green opened an architectural office in Los Angeles and also worked in the office of renowned industrial designer, Raymond Loewy. Green later accepted Wright’s 1951 offer to form a partnership in San Francisco, where Green would continue his independent practice and serve as Wright’s West Coast representative. The two worked on forty projects until Wright’s 1959 death, including the Marin County Civic Center, Post Office, and County Fairgrounds in San Rafael, and the V.C. Morris store on Maiden Lane in San Francisco. Green and Wright also designed the Frank Lagomarsino Residence (unbuilt) in San José. After Wright’s death, Green continued to work with Taliesin Associated Architects. In the mid-1960s, Green designed an eighteen-story library for San José State University, which was never built. Green’s only San José building, the Weir Building on 93 West Julian Street, has been demolished. See also Green, Aaron G.; Loewy, Raymond; Taliesin Associated Architects.

The San José architectural firm of Alan M. Walter & Associates, Inc. designed a variety of award-winning buildings in the Santa Clara Valley. In 1967, the Coast Valleys Chapter of the American Institute of Architects chose Walter’s West Valley Branch Library in San José (1964, 205)

demolished) as one of the two best-designed new projects in three counties, giving it a Design Honor Award. At the same awards ceremony, the firm also won the Architects’ Commendation Award for the First Congregational Church sanctuary building at Hamilton and Leigh Avenues in San José. The firm also designed some of the roughly formed concrete buildings at San José State University.206

Armet and Davis
Founded in 1947, the Santa Monica architectural firm of Armet Davis Newlove, AIA Architects has designed more than 4,000 restaurants and coffee shops in the United States, Canada, Mexico and Indonesia. It is a full-service architecture, planning, engineering and design firm. Then known as Armet and Davis, in about 1966 the firm designed the former Bob’s Big Boy (now Flames Coffee Shop) at 449 South Winchester Boulevard in San José. The classic one-story “Coffee Shop Modern” roadside structure features rock pillars, patterned walls, many windows, a convex roof, and tropical coloring, but the spike on the restaurant’s original sign has been truncated.207

Bamburg, Marvin A.
See MBA Architects.

Bernardi, Theodore C.
Architect Theodore Bernardi (1903-1990) began his career in the 1920s and ’30s in the offices of such well-known San Francisco architects as John Galen Howard, John Reid, Jr., and Miller and Pflueger. He then worked for William W. Wurster, Architect, in San Francisco as a draftsman (1934-ca. 1936) and chief designer (ca. 1937-1942). The two architects became partners in Wurster and Bernardi (1944-1945), subsequently adding Donn Emmons as a partner in the new firm of Wurster, Bernardi and Emmons. Bernardi worked there until his death in 1990. He was

also an instructor at the University of California, Berkeley (1954-1971). See also Wurster, Bernardi and Emmons.208

Binder, William

The architectural career of William Binder, AIA (1871-1953) spanned six decades, starting with his 1890 apprenticeship to George W. Page in San José and ending with the very successful partnership of Binder & Curtis (founded in 1918; both men died in the mid-1950s). Considered by some to be San José’s first “modern” architect, Binder was the first in the area to use iron or steel reinforced concrete in commercial structures, which fared relatively well in the 1906 earthquake. Binder partnered with Fairly Weiland in 1895, designed a number of houses, and then opened his own practice in 1897. He designed the Old St. James Hotel (ca. 1892, National Register of Historic Places, City Landmark), Alcantara Building (1903), Sid Grauman’s Unique Theater (1903), Carnegie Library (1903), José Theatre (1904, contributor to National Register district, City Landmark), Garden City Bank and Trust Co. (1907, San José’s first steel frame skyscraper), Montgomery Hotel (1911, eligible for National Register of Historic Places, City Landmark), YMCA (1913, contributor to National Register district), Elks Club (1913), T&D Theatre (1913), Twohy Building (1917, National Register of Historic Places, City Landmark). Working with T.S. Montgomery, he designed many homes in Montgomery’s Naglee Park, helped develop a block of buildings on the South First Street block near the Montgomery Hotel, and designed many of downtown San José’s buildings from 1900-1940. He formed the Binder & Curtis partnership with Ernest N. Curtis in 1918, after Curtis had worked for him for eight years.209 See also Binder & Curtis.

Binder & Curtis

The architectural firm of Binder & Curtis was one of the most well-known and prolific San José partnerships of the twentieth century, designing commercial, civic, educational and other buildings. Architect William Binder hired Ernest Curtis as a draftsman in 1911, and the two became partners in 1918. Among many other commissions, the firm designed the Hippodrome Theatre (1919, with Weeks and Day), Commercial Building (1926, City Landmark, eligible for National Register of Historic Places), Towne Theater (1927, formerly Hester Theater, City Landmark), Salvation Army building (1928), San José Hospital, Hale’s Department Store (1931, Structure of Merit), Willow Glen Theater (1933), Burrell Building, Hall of Justice, Civic Auditorium (1934-1936, City Landmark), San José Water Works (1934, eligible for National Register, City Landmark) on West Santa Clara Street, the Modernist fire station (1948) on East Julian Street, Fire Station No. 1 on Market Street (1951, eligible for the National and California Registers, Candidate City Landmark), and various residences. The firm’s industrial Muirson Label Plant buildings (425-435 Stockton Avenue) were demolished. After Binder’s death in 1953, Curtis kept the firm going until he died in 1956. Curtis was the master architect for the Civic Center project on North First Street, overseeing the work of the architects designing specific buildings in the complex. Ernest Curtis’s son Norman “Bud” Curtis had been working for the firm since 1947 and coordinated the project after his father’s death. The younger Curtis later designed the Annex to the former City Hall. In 1958, the firm designed additions to Lincoln High School, including a cafeteria building, four science classrooms, and a shop building. Norman Curtis closed the firm of Binder and Curtis after the Civic Center project ended, founding Norton S. Curtis & Associates in the early 1960s.210 See also Binder, William; Curtis, Ernest N.; and Curtis, Norman S.

Bolles, John S.

See John S. Bolles & Associates.

Booth, Corwin L.

After earned his architecture degree from the University of Illinois, Champagne-Urbana, architect Corwin Booth, AIA (1915-2008) worked for the well-known Chicago architecture firm Albert Kahn Associates. During World War II, he worked as a civilian architect in Honolulu, doing a great deal of Navy work. He subsequently worked in Manila, Philippines for the San Francisco architecture firm of Weihe, Frick & Kruse as chief architect for the future Clark Air Force Base. He moved to the Bay Area in 1949 and founded Falk & Booth with structural engineer Mark Falk. In 1965, he moved on to found Corwin Booth & Associated Architects (with as many as 75 employees) and focused for about five years on designing schools in Northern California. In 1966, he moved the firm to the historic Folgers Coffee Building, which he had bought, on Howard Street in San Francisco. At the beginning of the 1970s, the firm began to focus on real estate development.211

Bruno, H. John

See Bruno & Kobashi.

Bruno & Kobashi

In 1965, H. John Bruno, AIA of the San José architectural firm of Bruno & Kobashi designed a $600,000, seven-story multi-use building on the southwest corner of Redwood and Bailey avenues, between the Valley Fair shopping center and the Emporium. Realtor A. DeGennaro developed the plans. Specialty retail stores were slated to occupy the ground and first floors, plus four stories of offices, capped by a residential penthouse. San José’s B.E.M. Co. was the contractor.212

Burdick, Norman

See Norman Burdick and Associates.

Butner, Charles E.

Architect Charles E. Butner, AIA (1888-1957) graduated from the University of Pennsylvania in 1911 with a Certificate of Proficiency in Architecture. After graduation, he worked in New York City for Grosvenor Atterbury, FAIA, and landscape architect Frederick Law Olmsted, Jr., on Forest Hills Gardens, an example of the Garden City movement and one of the country’s oldest planned communities. Butner eventually moved to Fresno, where he founded the architecture firm of Glass & Butner with his college classmate Edward Glass (1886-1954). Drafted in 1917, Butner served in France during World War II. When he returned to Fresno, Glass & Butner opened a San Francisco office from 1919 to the early 1920s, dissolving their partnership when Glass’s wife became ill. Among other projects, Glass & Butner produced a set of documentary drawings (now lost) of the California missions for publisher William Randolph Hearst. Butner formed a new partnership with William Stranahan, and maintained offices in Fresno and Salinas until Stranahan died in 1932. Butner closed the Fresno office and moved permanently to Salinas, but he maintained offices at 20 West Santa Clara Street and 985 The Alameda in the 1940s. Several of his buildings are listed in the National Register of Historic Places.213

Churchill, William A.

Architect William A. Churchill, AIA has worked in the Santa Clara Valley since 1958 and is still in business. He focuses on commercial, government, institutional, school and multi-family residential projects. His work has won many awards and has been featured in almost forty articles. The Baytree Apartments in Los Gatos won a National Award of Merit from the American Institute of Architects in 1961, as did the La Palma Apartments in Santa Clara in 1963. In 1967, the Coast Valleys Chapter of the American Institute of Architects awarded his firm, Marburg-Churchill, AIA, an Architects’ Commendation Award for the Gilroy Justice Court, 50

Churchill-Zlatunich, AIA

Clark, Birge M.

Famous Bay Area architect Birge M. Clark (1894-1989) and Joseph Ehrlich designed the John Muir Junior High School (1958) in San José to relieve Markham Junior High School from holding double sessions. With Walter S. Stromquist, Clark designed the H.M. Gousha Company building (1946) in San José. When Clark opened his San José office, he was one of only two architects between San Francisco and San José. He eventually designed more than 450 Palo Alto buildings. He designed many buildings in the Period Revival styles of the 1920s and 1930s, favoring a version of the Spanish Eclectic Style that he called “California Colonial.” However, Clark later designed modern ranch homes, Streamline Moderne buildings and commercial glass boxes. Clark’s projects included industrial and hospital work for Kaiser Permanente, many public schools, and projects for Hewlett Packard. Clark designed few houses after the 1950s. He graduated from Palo Alto High School, Stanford University (1914), and Columbia University (1917). He served in the U.S. Army Balloon Service in World War I (1917-1919). He was a partner in the Palo Alto architectural firms of Clark and Clark (with his brother David Clark); Clark and Stromquist; Clark, Stromquist and Sandstrom; and Clark, Stromquist, Potter and

Ehrlich. Clark was an instructor in architecture at Stanford University from 1950 to 1972.215 See also Clark, Stromquist, Potter, Ehrlich Partnership.

Clark, Stromquist, Potter, Ehrlich Partnership

The Palo Alto firm of Clark, Stromquist, Potter, Ehrlich Partnership, which was founded in 1945, included architects Birge M. Clark, Walter S. Stromquist, David Farington Potter, and Joseph Ehrlich. The firm designed the John Muir Junior High School (1958) and the H.M. Gousha Company building (1946) in San José.216 See also Clark, Birge M.; Ehrlich, Joseph; Potter, David Farington; and Stromquist, Walter S.

Conrad H. Stieber & Associates, AIA, Architects

Among other San José commissions, the architectural firm of Conrad H. Stieber & Associates, AIA, Architects designed the Wood-Nye Office Building (1962) and the Calabazas Branch Library (1966) at 1230 Blaney Avenue. The firm was founded in 1961.217 See also Stieber, Conrad H.

Corwin Booth & Associated Architects

See Booth, Corwin L.

Curtis, Ernest N.

Son of masonry contractor Frederick Curtis and father of architect Norton “Bud” Curtis, architect Ernest N. Curtis was a member of one of the most prolific San José architecture firms in the twentieth century, Binder & Curtis. He began his career as an apprentice to San José architect

George W. Page. Before becoming partners with architect William Binder in 1918, Curtis was Binder’s draftsman and served in World War I. When Binder went into semi-retirement during the Depression, Curtis performed more of the design work for the firm. Perhaps his most impressive creation is the San José Civic Auditorium (1936). Curtis was also a member of the San José Planning Commission as early as 1935, and he was chosen as the master architect to oversee the development of the Civic Center in the 1950s. See also Binder & Curtis.218

Curtis, Norton S.
See Binder & Curtis; Norton S. Curtis & Associates.

DeGrange, Allen
See Feldheym, DeGrange and Reid.

Donald Francis Haines & Associates
See Haines, Donald Francis.

Donald Francis Haines-Zaren Tatarian & Associates
See Haines, Donald Francis.

Ehrlich, Joseph
With famed Bay Area architect Birge Clark, Joseph Ehrlich, AIA designed the John Muir Junior High School in San José. The new school was needed to relieve Markham Junior High School from holding double sessions. Groundbreaking occurred in November 1958. Joseph Ehrlich was a partner in the Palo Alto firm of Clark, Stromquist, Potter, Ehrlich Partnership, which was

founded in 1945. His partners were Birge M. Clark, Walter S. Stromquist, and David Farington Potter. See Clark, Stromquist, Potter, Ehrlich Partnership.

Emmons, Donn

Donn Emmons (1910-1997), a partner in the architectural firm of Wurster, Bernardi and Emmons, started his career as a designer and construction superintendent for three Los Angeles architects, Edgar Bissantz, Winchton L. Risley, and Roland Coate, Sr. (1934-1938). He then moved to the Bay Area and became a draftsman for William Wilson Wurster, Architect from 1938-1941. In 1946, he joined Wurster as a partner in the firm of Wurster, Bernardi and Emmons, Architects in San Francisco. The firm was responsible for designing many California buildings. In San José, Emmons designed the Richmond-Chase Office Building (1946) at 817 The Alameda for the local cannery, Richmond-Chase Company. Emmons was the younger brother of architect Frederick E. Emmons. See also Wurster, Bernardi and Emmons.

Emmons, Frederick E.

As partners in the Jones & Emmons architectural firm (1950-1969), Frederick E. Emmons, AIA (1907-1999) and A. Quincy Jones, FAIA designed thousands of homes for famous residential developer Joseph Eichler, including a 550-home development in San José’s Fairglen neighborhood, circa 1959. Designed in the Post-and-Beam Style, the homes featured open plans, wide expanses of glass, and a street-facing garage or carport. In 1929, Emmons earned his bachelor’s of architecture degree from Cornell University. Before partnering with Jones in 1950, Emmons was a draftsman for McKim, Mead, and White in New York City (1930-1932); a draftsman for William W. Wurster in San Francisco (1938-1939); a designer for Allied Engineers, Incorporated (1940-1942); was on active duty in the United States Naval Reserve (1942-1946); and was principal of his own firm, Frederick E. Emmons, in Los Angeles (1946-1950). He was an expert on ocean liners and wrote *American Passenger Ships: the Ocean Lines*.

and Liners, 1873-1983, published by the University of Delaware Press in 1985. Frederick was the older brother of architect Donn Emmons. See also Jones & Emmons.

Ernest Kump Associates
See Kump Jr., Ernest J.

Feldheym, Leonard
While researching pole frame construction to build replacement coops for his chickens, Leonard Feldheym (1916-1997) transitioned from being a poultry-raiser to a licensed architect. He specialized in pole frame construction, building many homes in the Santa Clara Valley hills. He started as a sole practitioner, but later partnered with architects Allen DeGrange and Twain Reid. The joint venture of Feldheym, DeGrange and Reid developed low-income housing developments in Northern California, including projects in San José, Morgan Hill, Campbell and Santa Cruz. His projects won awards, including a Design for Better Living Award from the American Wood Council for the California Energy Conservation Home in San José, as well as a Congress on Better Living Award from McCall’s magazine for a Saratoga home. Feldheym went to high school in Oakland and earned his bachelor’s and master’s degrees from the University of California, Berkeley. See also Feldheym, DeGrange and Reid.

Feldheym, DeGrange and Reid
The joint venture of Feldheym, DeGrange and Reid developed low-income housing developments in Northern California, including projects in San José, Morgan Hill, Campbell and Santa Cruz. The firm won several awards, including a Design for Better Living Award from the American Wood Council for the California Energy Conservation Home in San José, as well as a

Congress on Better Living Award from *McCall’s* magazine for a Saratoga home.223 See also Feldheym, Leonard; DeGrange, Allen; and Reid, Twain.

Franklin & Kump

See Kump Jr., Ernest J.

Franklin, Kump & Falk

See Kump Jr., Ernest J.

Fred Marburg, AIA

See Marburg, Fred; Marburg-Churchill, AIA; and Kurt Gross, Fred Marburg, Architects.

Geauque, G.W.

Los Altos architect G.W. Geauque advertised in the San José city directory in the 1930s.224

Goudie, Clyde D.

Architect Clyde Goudie worked independently, as a partner in Goudie & Griffin, and as a partner in Kress, Goudie and Kress. In 1958, he designed a cafeteria addition at Willow Glen Elementary School.225 See also Goudie & Griffin; Kress, Edward W.

Goudie & Griffin

For about ten years prior to 1962, Goudie & Griffin had designed all of the schools in the former Jefferson School District in Santa Clara, including the Pomeroy Elementary School, Sutter Elementary School, and Curtis Middle School.226 See also Goudie, Clyde D.; Griffin, DeWitt J.

224 *Polk’s San José California City Directory* (1935), 640.
Green, Aaron G.
See Aaron G. Green Associates, Inc.

Griffin, DeWitt J.
As a partner with the San José architectural firms Goudie & Griffin and then Griffin Joyce Associates, Inc., architect DeWitt J. Griffin (1914-1997) was responsible for designing many mid-century buildings in the Santa Clara Valley. He focused on schools, civic buildings, and commercial structures. Examples include the 1953 Walter L. Bachrodt Elementary School (102 Sonora Avenue) and the former main post office on Meridian Avenue. For about ten years prior to 1962, Goudie & Griffin had designed all of the schools in the former Jefferson School District in Santa Clara, including the Pomeroy Elementary School, Sutter Elementary School, and Curtis Middle School. Griffin’s nascent architecture career had been preempted by World War II. Freshly armed with an architecture degree from the University of California, Berkeley just before the war started, Griffin subsequently received a Navy commission and conducted submarine warfare on destroyers in the Mediterranean. After his service, he practiced architecture in Pasadena but was recalled to the Navy during the Korean War. He later became commanding officer of the U.S. Naval Reserve Training Center in San José. The heart attack he suffered while delivering a Navy Day speech to the San José Chamber of Commerce led him to leave the Navy and resume his architectural career in San José. See also Goudie & Griffin.

Griffin Joyce Associates, Inc.
See Griffin, DeWitt J.

Gross, Kurt

The January 1954 issue of *Progressive Architecture* announced that architects Fred Marburg and Kurt Gross formed the partnership of Kurt Gross, Fred Marburg, Architects on 390 Park Avenue in San José. The firm designed the home of Dr. T.N. Foster on Horseshoe Drive in Saratoga, and it was featured on a house tour in 1954. See Kurt Gross, Fred Marburg, Architects.

Haines, Donald Francis

Founded in 1953, the San José firm of Donald Francis Haines & Associates designed the iconic, curved former San José City Hall in 1957. In 1956 and 1960, the firm opened branch offices in San Francisco and Stockton to accommodate all of the firm’s public school commissions. The firm designed several structures at Cal Poly in the International Style, including the Health Center (1960), Mathematics and Science building (1959), and the Robert E. Mott Physical Education building (1960). The firm also designed the Daly City Civic Center and the Main Post Office in Oakland. In 1963, Zaven Tatarian became a principal and the firm became Donald Francis Haines — Zaven Tatarian & Associates. Haines retired in 1970. Earle C. Ipsen, AIA became a principal in 1972, and the firm was renamed Haines Tatarian Ipsen & Associates. The name became HTI INC., Architects in 1990 when Tatarian retired and John William Spahr was named as a principal. The firm is now based in Oakland.

Haines Tatarian Ipsen & Associates

See Haines, Donald Francis.

HTI, Inc.

See Haines, Donald Francis.

Hedley, James
See James Hedley & Associates.

Hedley Jr., William W.
See William W. Hedley Jr. & Associates.

Hedley & Stark
See William W. Hedley Jr. & Associates.

Higbie, Howard W.
Architect Howard W. Higbie and interior decorator Jane C. Higbie (Higbie Studios) are both listed at 518 South Second Street in San José in the 1930s and 1940s.230

Higgins, William L.
In addition to all of the buildings he designed with Higgins & Root Associates, AIA and its successors, architect William L. Higgins served on both the Saratoga Planning Commission and the Santa Clara Planning Commission. He was most proud of the Higgins & Root designs at West Valley College in Saratoga, where his firm designed half of the buildings and Reid & Tarics designed the other half.231 See also Higgins & Root Associates, AIA.

Higgins & Root Associates, AIA
Higgins & Root Associates, AIA was one of the most prolific local architectural firms during the mid-twentieth century. Before founding Higgins & Root, William L. Higgins worked with his father, William E. Higgins, who partnered with architect Frank Wolfe in the firm of Wolfe & Higgins. In 1936, Higgins’s father died and the younger man sought a new partner, turning to Dean Warren Charles Perry at the University of California at Berkeley, School of Architecture for suggestions. Perry sent four names to Higgins, and Chester Root got the job. During World

230 Polk’s San José California City Directory (1940), 676; (1935), 223, 640.
War II, Root worked for the Army Corps of Engineers and Higgins closed the office and worked for Permanente. The firm resumed work after the war, designing many schools, banks, churches, factories, civic buildings, jails, hospitals, utilities, residences and other projects.\(^{232}\) With Cliff May, Higgins & Root also designed the *Sunset Magazine* campus in Menlo Park around 1951, a collaborative effort that garnered much press.\(^{233}\)

The firm designed scores of educational buildings in San José, Saratoga, Los Gatos, Morgan Hill, Mt. Pleasant, Campbell, and other communities in the Santa Clara Valley.\(^{234}\) The school facilities included classrooms, athletic facilities and administration buildings, from elementary schools to colleges.\(^{235}\) San José school commissions included many structures for the San José Unified School District; the original Chandler Tripp School (1949) next to the Anne Darling Elementary School; structures at the Peter Burnett Junior High School (1949); the Santa Clara County School Department headquarters on Moorpark Avenue; San José State University structures, such as the Memorial Chapel (1952) and bookstore (ca. 1955); and San José City College buildings, like the Student Service Center (1962) and Speech Arts building (1963).\(^{236}\)

\(^{234}\) See Higgins & Root Scrapbook, Vols. 1 & 2.

\(^{235}\) Higgins & Root did not limit their school design interest to the United States. In 1958, the firm sent plans and photographs for a “basic-type schoolhouse” to the United States of America Operations Mission to Afghanistan in Kabul. The Mission staff said the plans “proved very interesting and provocative to Afghan educators,” and that “recent policy modifications have given educational construction a high priority among foreign-aid projects. We here in Afghanistan feel that helping friendly and uncommitted nations toward better educational programs is in both the short and long run, a wise investment of taxpayers’ money. Your part in helping make this program a success is greatly appreciated.” (Letter from Robert B. Simpson, Columbia University Team, United States of America Operations Mission to Afghanistan, American Embassy, Kabul, Afghanistan, to Higgins and Root, AIA, December 23, 1958, Higgins & Root Scrapbook, Vol. 1, 32.) San José provided the link between the firm and the Mission: Robert Simpson’s father was the Rev. Tom Simpson of the Stone Church of Willow Glen. (“Model,” Higgins & Root Scrapbook, Vol. 1, 32.)

In 1946, the City of San José selected Higgins & Root, Kress & Gibson, Binder & Curtis, and Ralph Wyckoff to design four new fire stations at Sixth and Taylor streets (Higgins & Root), Sixth and Julian streets (Binder & Curtis), Minnesota Avenue near Iris Court in Willow Glen, and Seventeenth and Santa Clara streets.\(^{237}\) In 1949, the firm designed a remodel of the fire-damaged Sainte Claire Club at Second and St. James streets. In 1951, Higgins & Root designed a complex of five shops and four medical and dental offices built for Herschel C. Graham, manager of F.W. Woolworth Co. The stone, brick and stucco complex was built next to the First National Bank on Business Street (now Business Circle) near Flagg Avenue.\(^{238}\)

The firm designed a chapel (1949) built in honor of Frances R. Schallenberger at the St. Francis Episcopal Church at Pine and Washington avenues in Willow Glen; the modern Gothic-influenced Calvin Presbyterian Church (1955) at Meridian Road and Fruitdale Avenue; the $80,000 Penn Mutual Life Insurance Co. headquarters building (ca. 1955) on The Alameda, south of Idaho Street; the 1963 remodel of Higgins & Root’s old offices at 220 Meridian Avenue, which the firm updated for a new tenant; and the August Boeger School (1965) in the Mt. Pleasant School District.\(^{239}\)

Other San José commissions included the new mall area at the Santa Clara County Superior Court complex (1966) at North First and St. James streets; and the San José Health Center (ca. 1971).\(^ {240}\) Higgins & Root’s much-heralded Santa Clara County Welfare Building (1963) at 55 West Younger Avenue has been altered extensively and now houses the Santa Clara County

Like many mid-century branch libraries in San José, Higgins & Root’s Rosegarden Branch Library (1960) was demolished. In 1963, Higgins & Root moved from the Park-Meridian Professional Building at 220 Meridian Avenue in San José to its newly designed offices in Los Gatos. It had designed more than $60 million in projects by 1963.

In 1967, the Coast Valleys Chapter of the American Institute of Architects (AIA) honored the firm with an Architects’ Commendation Award for the Saratoga United Presbyterian Church at 20455 Harriman Avenue, and for the Union School District Administration Building at 5175 Union Avenue in San José. The AIA chapter also gave an Architectural Design Merit Award for the firm’s interior of Los Gatos Methodist Church, at Church Street and High School Court. Factory Magazine honored Higgins & Root’s 42,000 square foot Tempress Industries electronics plant (1970) in Los Gatos as one of the ten most beautiful factories in the United States in 1970. The San Mateo County Development Association awarded the top 1970 Environmental Award to the firm’s Sunset Magazine Building in Menlo Park. The firm also won three Awards of Merit in the 1970 AIA Design Awards program of the AIA’s Santa Clara Valley Chapter. Root died in 1977, and Higgins subsequently partnered with a Santa Cruz-based architecture firm that specialized in residential work. The new firm was called Higgins & Root, Ellmore-Titus, Inc. See also Higgins, William L.; Root, Chester O.

Ikeda, George

In 1962, architects J. Francis Ward, AIA, of San Francisco and George Ikeda designed the new $400,000 Sumitomo Bank of California branch at First and Ayer streets in San José. The two-

story “modern” bank was built of concrete, steel, glass and St. Peters travertine marble, with a Japanese garden and a bridge over a lily pond. Sakura Construction Co. was the contractor.249

\textbf{Ipsen, Earle C.}

See Haines Tatarian Ipsen & Associates; Haines, Donald Francis.

\textbf{Jaekle, Donnell E.}

Born in Napa, architect Donnell E. Jaekle (1902-1972) moved to San Francisco by 1931, when he designed a Zig-Zag Moderne service station at Larkin and Pacific (relocated to Market Street). Jaekle moved to San José around 1945 and rented space in the Builders’ Exchange offices at 201 South Market. Soon after moving to the city, he designed, lived in and managed the Gran Valle, a large apartment building at 33 Empire Street. Jaekle accepted multi-family residential, commercial and industrial commissions, including designing a new Builders’ Exchange Building (PAL Building) at 460 Park Avenue (1950, Structure of Merit). Jaekle’s firm moved to the new building for a time, but he subsequently designed his own so-called “tropical modern” office building at 586 North First Street in 1954, about the same time that he became partners with Donald French of San Bruno. The Jaekle and French partnership lasted about five years. Jaekle continued to take a variety of commissions. His commercial buildings included the Teamsters Building (North Fourth Street), Shasta Market (North Seventeenth Street), Safeway (South First Street), Brueners Co. (The Alameda), and San Francisco and San José bakeries like Langendorf (Phelan Road). His industrial commissions included Westinghouse Electric Supply Co. (Stockton Avenue), Mundell Paper (South Seventh Street), and Regal Pale (Sunol Street). He also designed the Martha Street Firehouse, the San José-Alviso Municipal Court Building at the Civic Center, and large apartment complexes near San José State University. Jaekle’s design aesthetic featured modern geometric, angled and cantilevered forms, plus Arizona field stone as window bases.250

249 “Ground Broken for Bank,” \textit{San José Mercury}, July 12, 1962.

James Hedley & Associates

The architectural firm of James Hedley & Associates designed the now-demolished Hillview Branch Library.251

John S. Bolles & Associates

In the mid-1950s, IBM commissioned Bay Area architect John Bolles, FAIA (1905-1983) to design its Cottle Road campus in the Edenvale section of South San José. The 210-acre campus was the largest of IBM’s new West Coast facilities in the 1950s, and Bolles designed thirty-three buildings there. IBM’s goal was to create a model business campus integrating well-designed architecture, art and landscaping to achieve both high manufacturing production and employee satisfaction. Bolles brought in landscape architect Douglas Baylis, artist Lucienne Bloch, Robert Holdeman, sculptors Gurdon Woods and Robert B. Howard, plus other design colleagues. The campus was featured in Architectural Forum in June 1958 and was awarded as one of ten “Plants of the Year” in 1958 by Factory Maintenance and Management magazine. Bolles also designed Candlestick Park (1960) in San Francisco, seventeen Macy’s department stores and three distribution centers in Northern California, General Motors’s Fremont plant, and Gallo and Paul Masson wineries. Bolles earned a bachelor’s degree in engineering from the University of Oklahoma in 1926 and a master’s degree in architecture from Harvard in 1932. Before opening his own architectural firm, Bolles worked in archaeology and joined his father, Edward Grosvenor Bolles (ca. 1871-1939), in his San Francisco architectural practice in 1936. He earned his architecture license in 1941. Bolles served during World War II as the Federal Public Housing Authority’s Area Project Engineer in Northern California, overseeing the construction of 15,000 Bay Area houses. He also formed a partnership with J. Francis Ward, after first linking up with him in 1942 and working on federal housing projects in Marin City and Oakland. Bolles and Ward’s Richard Walberg House (1946) at 16 Spruce Street in San Francisco was featured as “Tomorrow’s House Today!” in Architect & Engineer magazine. It had 213

251 Archives & Architecture, MLK Library Historical and Architectural Evaluation, 14.
electrical outlets, fluorescent kitchen lighting, a garbage disposal, and an automatic garage door. Bolles and Ward’s partnership ended in 1954.252 See also Ward, J. Francis.

\textbf{Jones, A. Quincy}

Noted California architect A. Quincy Jones, FAIA (1913-1979) was very active in the Modernist period. In partnership from 1950 to 1969, A. Quincy Jones, FAIA and Frederick E. Emmons, AIA designed thousands of homes for famous residential developer Joseph Eichler, including a 550-home development in San José’s Fairglen neighborhood. Jones earned his bachelor’s of architecture degree from the University of Washington in Seattle in 1936. After graduation, Jones was a draftsman for Douglas Honnold (1936-1937); designer for Burton A. Schutt (1937-1939); designer for renowned architect Paul R. Williams (1939-1940); and worked for Allied Engineers (1940-1942). From 1945-1950, he operated his own firm, A. Quincy Jones, Architects. In 1950, the American Institute of Architects gave Quincy Jones the first Honor Award in residential architecture, for a home designed for A.C. Hvistendahl. In 1950, Jones formed a partnership with Frederick E. Emmons, AIA. Jones was a registered architect in California, Arizona and Texas, and served as the Dean of the University of Southern California’s School of Architecture from 1975-1979.253 See also Jones & Emmons.

\textbf{Jones & Emmons}

In partnership from 1950 to 1969, A. Quincy Jones, FAIA and Frederick E. Emmons, AIA designed thousands of homes for famous residential developer Joseph Eichler. From 1949 to 1974, the Palo Alto-based Eichler Homes built housing developments in the Bay Area and elsewhere in California. Around 1959, the Los Angeles-based Jones & Emmons designed homes for Eichler in San José’s Fairglen neighborhood, a 550-home development. The collaboration between Eichler, Jones and Emmons began in 1950, when the \textit{Architectural Forum}’s December

issue announced that the magazine had given Eichler the “Subdivision of the Year” award, and that the American Institute of Architects had given Quincy Jones the first Honor Award in residential architecture. Eichler saw it and called Jones, and in January 1951 he commissioned Jones & Emmons to design a new Eichler subdivision. Designed in the Post-and-Beam Style, the homes feature open plans, wide expanses of glass, and a street-facing garage or carport. The firm’s larger non-residential commissions include the Biological Sciences Building (1959) at the University of California, Santa Barbara; the Chemistry Building (1967) at the University of California, Riverside; and the Annenberg School of Communications (1972, 1976, 1979) at the University of Southern California.

Kensit, H.D.

Los Gatos architect H.D. Kensit advertised in the San José city directory in the 1940s.

Knoll, A.H.

Los Altos architect A.H. Knoll advertised in the San José city directory in the 1930s.

Kocher, George S.

Owner of the Kocher Construction Co., George S. Kocher (ca. 1898-1988) was a San José architect and builder who completed projects throughout the Santa Clara Valley. A pre-med major at Stanford University, Kocher changed his career direction to architecture after visiting Asia as a mess boy on a freighter. He was inspired by bamboo huts on stilts in the Philippines and “paper-walled” houses in Japan. He began as a laborer, helping build the now-demolished San Mateo High School (1925) during the day and drawing houses at night. He later worked for renowned San Francisco architect Gardner A. Dailey, leaving in 1929 to start his own firm in San José. His small architecture office grew to include real estate and building services. In 1941, the Kocher Construction Co. built 105 homes in the Lansford Tract area of Willow Glen.

255 Polk’s San José California City Directory (1949-1950), 1033.

256 Polk’s San José California City Directory (1935), 640.
The firm designed and built many commercial buildings, apartment houses, and residences throughout the San José area. In 1948, Kocher saw a need for low-cost housing and created the Mobile Home Corp. of San José. The company sold more than 160 homes within nine months, building five- or six-room homes in a central place and moving them to a buyer’s site after the units were sold.\(^{257}\) See also Kocher Construction Co.

Kreinkamp, Herbert A.

During his career, architect Herbert A. Kreinkamp worked for the federal government and in private practice. In the 1930s, Kreinkamp was an assistant landscape architect in the National Park Service’s Branch of Plans and Design, Western Division, where he headed one of the geographical districts. Kreinkamp maintained an architecture office in San José after World War II. In 1950, he designed the main dining hall at the Ben Lomond Quaker Center in Ben Lomond, California.\(^{258}\)

Kress, Edward W.

Architect Edward W. Kress practiced in San José under various firm names in the mid-twentieth century, including Kress & Gibson; Kress, Goudie and Kress; and Kress & Winston. His commissions included the Cambrian Branch Library (1961, demolished) in San José; schools such as the girls’ gym (1962) at Los Gatos High School; residences, like the Wesley Hancock House (ca. 1954) on El Camino Grande in Saratoga and an apartment house (1937) that the *San José Mercury* described as “modernistic style” on North First Street in San José, built by W.C. Thompson of Santa Cruz; a San José fire house (1946); and remodeling of the Wilcox Block in San José.\(^{259}\)

Kress & Gibson

The architecture firm of Kress & Gibson operated in San José in the 1940s and 1950s. In 1946, the City of San José selected Kress & Gibson, Binder & Curtis, Higgins & Root, and Ralph Wyckoff to design four new fire stations at Sixth and Taylor streets (Higgins & Root), Sixth and Julian streets (Binder & Curtis), Minnesota Avenue near Iris Court in Willow Glen, and Seventeenth and Santa Clara streets. In 1950, Kress & Gibson redesigned the façades of the three buildings comprising the Wilcox Block in San José.260 See also Kress, Edward W.

Kress, Goudie and Kress

See also Goudie, Clyde D.; Kress, Edward W.

Kress & Winston

Architects Kress & Winston and Frank C. Treseder designed the girls’ gym (1962) at Los Gatos High School, which a newspaper article described as sporting the “box-like look.” The firm also designed the home of Wesley Hancock (ca. 1954) on El Camino Grande in Saratoga. In the Jefferson School District, two trustees proposed that Kress & Winston design a new school for the area west of Lawrence Road and south of El Camino Real, and a multi-purpose room for Sutter School. The firm’s Cambrian Branch Library (1961) in San José has been demolished.261 See Kress, Edward W.

Kump Jr., Ernest J.

Architect Ernest J. Kump, Jr. (1911-1999) was internationally known for his innovative school designs. Kump was a proponent of the “finger-plan” layout, which features one-story finger-
shaped buildings, open covered walkways, light, air and exposure to the California climate. His $2.5 million San José High School (1952, 1961), now the San José Academy, won the American Institute of Architects’ Award of Merit and was featured in a New York Museum of Modern Art exhibit and book celebrating outstanding Modernist buildings, Built in USA: Post-war Architecture. Kump’s other San José commissions included the Santa Clara Superior Court; St. James Square (1962); California Water Service Company Building; North First Street (1964); and the Student Union Building at San José State University (1972). His design for Foothill College in Los Altos (1962) is considered a masterpiece of college campus planning and design. Kump also designed Gunn High School in Palo Alto (1965), De Anza College (1967) in Cupertino and Crown College (1967) at the University of California, Santa Cruz.

Kump graduated from U.C. Berkeley in 1932 and attended Harvard University graduate school under Bauhaus architect Walter Gropius’s supervision. Needing to pay the bills, Kump left school and joined his father, architect Ernest J. Kump, Sr. (1888-1939), in practice. A 1916 issue of The Architect and Engineer of California reported that Kump, Sr. had designed thirty-three schools within four years. His son would eventually adopt the same specialty. But the elder Kump soon fired his Modernist son, characterizing his designs as “chicken coop architecture.” Fresno architect Charles H. Franklin then hired Kump, Jr. to design a new house for prominent merchant Sam Pudlin, who was inspired by modern residential designs at the 1933 Century of Progress International Exposition in Chicago. Kump’s design for Pudlin “set a dramatic new standard for design simplicity” in Fresno, and Franklin & Kump became partners in 1937.

Franklin & Kump’s work was groundbreaking. The firm’s Acalanes High School (1939) in Lafayette, and Exeter High School (1941) were early examples of the new “finger-plan” campus model. New York’s Museum of Modern Art featured the firm’s Modernist Fresno City Hall (1941) as one of the most significant American structures built between 1932 and 1944. During World War II, Franklin worked for the Army Corps of Engineers and Kump was an architect for the Navy, both in the Bay Area. They subsequently formed the new firm of Franklin, Kump & Falk with Mark Falk (1896-1965) in San Francisco, and their International Style United Air
Lines Airport Terminal (1947) in Merced received the highest honors in *Progressive Architecture*’s 1948 awards competition. The firm was later renamed Kump & Falk, and it earned many awards as Kump became a prominent Modernist. Kump later founded Ernest Kump Associates in Palo Alto and New York.\(^{262}\)

Kump & Falk

See Kump Jr., Ernest J.

Kurt Gross, Fred Marburg, Architects

The January 1954 issue of *Progressive Architecture* announced that architects Fred Marburg and Kurt Gross formed the partnership of Kurt Gross, Fred Marburg, Architects on 390 Park Avenue in San José. Gross & Marburg designed the home of Dr. T.N. Foster on Horseshoe Drive in Saratoga, and it was featured on a house tour in 1954.\(^{263}\) See Gross, Kurt; Marburg, Fred.

Loewy, Raymond

Internationally famous industrial designer Raymond Loewy (ca. 1894-1986) was responsible for the former Lucky store across the street from the former Garden Theater in Willow Glen. It has been remodeled, but when it was designed in the late 1940s, the supermarket’s tall ladder-like sign pylon was clad in lemon-yellow metal porcelain panels. Loewy started his career as a fashion illustrator but transitioned to industrial design in 1929, creating eye-catching designs for more than 200 companies. His product designs included cars (the Studebaker Avanti, Champion and Starliner models, plus the introduction of slanted windshields, built-in headlights and wheel covers); spacecraft; the slenderized glass Coca-Cola bottle; kitchen appliances; postage stamps; the Lucky Strike cigarette packs; the Greyhound bus and logo; logos for Shell International, Exxon, Nabisco and the U.S. Postal Service; and Frigidaire refrigerators and ranges. Loewy’s firm designed the first fully climate-controlled, windowless department store, and the company

\(^{263}\) “Homes in Saratoga Open to Tour,” *San Francisco Examiner*. “Notices,” *Progressive Architecture*.
went on to design stores for Saks Fifth Avenue, Macy’s, J.C. Penney, Bloomingdale’s and Lord & Taylor.264

Logue Jr., Hollis
San José architect and planner Hollis Logue, Jr., AIA has designed many commercial, civic, and retail buildings in the San José area and around the country, including Hawaii, North Carolina and Idaho. In 1965, he designed the $1.5 million terminal (now Terminal C) at the former San José Municipal Airport (now the Norman Y. Mineta San José International Airport). The San José Mercury News labeled Terminal C a “palace of glass, concrete, and steel.” The terminal is currently slated for demolition. In 1964, the College of Notre Dame in Belmont commissioned Logue to be the architect of its ten-year master plan, including graduate student apartments, faculty housing, two student residences, a science-student union building, and a building to house the library, music and fine arts facilities. Logue was one of five original members of the San José Redevelopment Agency. Founded before 1950, Logue’s firm is still in practice.265

Marburg, Fred
The January 1954 issue of Progressive Architecture announced that Fred Marburg and Kurt Gross had formed the partnership of Kurt Gross, Fred Marburg, Architects on 390 Park Avenue in San José. Gross & Marburg designed the home of Dr. T.N. Foster on Horseshoe Drive in Saratoga, and it was featured on a house tour in 1954. Subsequently, Marburg’s firm was called Fred Marburg, AIA (1958-1962) and Marburg-Churchill, AIA (1962-1970). Marburg’s Baytree Apartments in Los Gatos won a National Award of Merit from the American Institute of Architects in 1961, as did the La Palma Apartments in Santa Clara in 1963. In 1967, the Coast Valleys Chapter of the American Institute of Architects awarded Marburg-Churchill &

Associates an Architects’ Commendation Award for the Gilroy Justice Court at 50 South Rosanna Street in Gilroy. See Kurt Gross, Fred Marburg, Architects.

Marburg-Churchill, AIA

See Churchill, William A.; Marburg, Fred.

Marvin Bamburg Associates Inc.

See MBA Architects.

May, Clifford M.

Cliff May (1909-1989) was a self-taught architect, sometimes known as the “father of the contemporary California ranch house.” He designed his first ranch house in the early 1930s, and later designed custom and tract ranches, primarily in Southern California. Based in Los Angeles, May designed about one thousand custom houses, including homes in Australia, Ireland and Switzerland. May sold plans for about 18,000 ranch houses and designed and developed ranch house tracts. *Sunset* magazine published May’s *Western Ranch Houses* in 1946. May stated that “the ranch house was everything a California house should be,” because it had “cross ventilation, the floor was level with the ground, and with its courtyard and the exterior corridor, it was about sunshine and informal outdoor living.” May worked with Higgins & Root to design the award-winning *Sunset* headquarters in Menlo Park.

MBA Architects

Marvin Bamburg, AIA opened Marvin Bamburg Associates Inc. (doing business as MBA Architects) in San José in 1968, and the firm is still in business. In San José, the firm designed

seventy low-income townhouse units at Don de Dios (1971). Designed in collaboration with Warren Gilbert, AIA, the project was built for the Mutual Ownership Development Foundation. MBA’s commissions include residential, commercial, industrial, institutional, urban design and master planning, interiors, tenant improvements, and historic preservation.269

Norman Burdick, AIA and Associates
Norman Burdick and Associates maintained an office at 1060 North First Street as of 1975. The firm later moved to Los Altos.270

Norton S. Curtis & Associates
The son of San José architect Ernest Curtis (of Binder & Curtis) and grandson of masonry contractor Frederick Curtis, Norton “Bud” Curtis (1921-2008) designed the former Dr. Martin Luther King, Jr. Main Library (1970) in San José. Bud Curtis worked with Binder & Curtis from about 1947, but he closed the firm after his father and William Binder died and the Civic Center project they had been supervising ended. He subsequently opened Norton S. Curtis & Associates in the early 1960s. The firm’s San José projects included many educational, civic, commercial and religious commissions, including the initial feasibility study for the Civic Auditorium expansion (1960), the San José Police Administration Building and Police Garage expansion, primary and secondary schools for the San José Unified School District, the Security Savings & Loan Building on South First Street, the Charles Davidson Building on West Julian Street, Wells Fargo and Bank of America buildings, St. Victor’s Worship Center, Holy Family Multi-use Building, St. Julie’s Church, Notre Dame Convent, and Church of the Holy Spirit Worship Center, Parish Hall, and Rectory. For about five years starting in the mid-1970s, Curtis practiced with the firm of Ruth, Going, and Curtis, Inc., a merger of his own company and the San José engineering firm of Ruth & Going, Inc. Among other projects, the company designed Kaiser’s

270 Polk’s San José California City Directory (1975), 74.
Santa Teresa Hospital. Curtis later resumed his practice as Norton S. Curtis & Associates, working until the late 1990s.271

McKenzie, Charles S.

Architect Charles S. McKenzie (1874-1957) was a partner with Frank Delos Wolfe (1862-1926) in the well-known Wolfe & McKenzie firm from 1897 to 1910. McKenzie designed many San José buildings, including commercial, residential, and institutional projects. His residential commissions showcased many styles, including the Tudor, Spanish Colonial Revival, and Arts and Crafts styles. Naglee Park contains many McKenzie-designed homes. He also designed the Ryland Park Swim Center (1927, Candidate City Landmark); Islamic Center on Third Street; the County Infirmary; the Hale Block; Archers Building; Wenger, Knapp and Clark Building; and the Osen McFarland Building in downtown San José. He served as a consulting architect for the Hall of Justice, Garden City Bank, and Elks Club (William Binder, lead architect). In 1932, McKenzie collaborated with San José architect Ralph Wyckoff to design a new science building of reinforced concrete with tile roof and brick exterior trim at San José State University. He also designed the much-publicized El Paseo Court (1932, contributor to National Register District, City Landmark) at 40-44 South First Street. The San José Mercury described it as “unique,” “a distinctive business structure in which beauty and utility will be happily combined,” and “a pleasing departure from the monotony which marks the average business building.” In 1933, McKenzie designed a new $14,000 Safeway store on East Santa Clara Street, between Twelfth and Thirteenth streets. The San José Mercury featured the one-story, reinforced concrete building’s “Modernistic Design,” with a light green glazed terra cotta façade and paved, flood-lit “‘drive-in’ accommodations.” In 1943, he designed a one-story dormitory for the county almshouse and a two-apartment building at the southeast corner of Ninth and St. John streets.272

Meston, Stanley Clark

Architect Stanley Clark Meston designed the McDonald's Drive-In Hamburger Restaurant (1960) at 2434 Almaden Expressway. In 1994, it was determined eligible as a City Landmark as one of the two remaining original McDonald’s restaurants in California with the trademark Golden Arches and red and white tile interior.273

Myers, Edwin J.

For three decades, architect Edwin J. Myers, AIA (ca. 1921-1985) operated the Edwin J. Myers architectural and planning firm in Cupertino. His son-in-law and principal business associate, J. Michael Horton, continued the firm after Myers died. Myers specialized in school buildings, designing more than fifty of them in Santa Clara County. He did pioneering work on the open classroom/modular school concept popularized in the middle of the twentieth century. Myers designed the new Herbert Hoover Junior High School in San José with perimeter classrooms around a central multi-use area. He also designed many churches, shopping centers and commercial buildings. Myers created one of Cupertino’s first master plans, and was a key advisor to the city as it developed. He held a bachelor’s degree in architecture from North Dakota State University and a master’s degree from the Cranbrook Academy of Arts.274

Pflueger, John M.

Architect John M. Pflueger, AIA designed the award-winning Clark Library (1981, renovated to Clark Hall in 2006) at San José State University. His firm is a descendant of his family’s renowned firm, Pflueger Architects (with Timothy, Milton and John Pflueger), which was

Safeway Stores, Will Build on Santa Clara Street,” San José Mercury, December 31, 1933. “$30,000 Building Contracts to be Let in San José,” San José Mercury. Polk’s San José California City Directory (1935), 640; (1940), 676. Ellis A. Davis, Davis’ Commercial Encyclopedia of the Pacific Southwest (Oakland, CA: Ellis A. Davis, c. 1915), 419.

founded in 1907 and designed the Bay Bridge, Oakland’s Paramount Theater, and other iconic Bay Area buildings. His office is located in Glen Ellen, California.275

Porter, Kal

Kal Porter, AIA (died 2008) had a 58-year architectural career, and his firm still exists today. He focused on innovative school designs and worked throughout the Santa Clara Valley. Porter designed the “first of its kind” New Inverness School (1962) in the Cupertino Union School District, where all walls were entirely movable, allowing 256 combinations of classrooms, multi-use and study areas. Porter also designed other Cupertino schools. Also around 1962, he designed an elementary school for the Jefferson School District next to the future Kaiser Hospital. He founded Porter, Jensen, Hansen, Manzagol Architects (1957-1978) in San José and San Clemente. He sold his interest in that firm (now known as PJHM Architects) in 1978, when Proposition 13 started to impact school commissions. Porter then founded the firm Kal Porter, AIA and Associates, Inc. (1978-1989), which became PSWC Group, Architects in 1989.276

Porter, Jensen, Hansen, Manzagol Architects

See Kal Porter.

Potter, David Farington

Architect David Farington Potter (born 1926) was a partner in the Palo Alto architecture firm of Clark, Stromquist, Potter and Ehrlich. Previously, he was a draftsman for Stone & Mulloy, Architects in San Francisco and a draftsman for Clark and Stromquist, Architects in Palo Alto. He earned his bachelor’s of architecture degree from Cornell University in 1948.277 See Clark, Stromquist, Potter and Ehrlich.

Reid, Twain

See Feldheym, DeGrange and Reid.

Root, Chester O.

Chester O. Root, FAIA (ca. 1905-1977) was a partner in the prolific San José/Los Gatos firm of Higgins & Root Associates, AIA. The firm designed schools, churches, residences, hospitals, libraries, and other civic, commercial and industrial buildings throughout the Santa Clara Valley, earning national awards of excellence. Root worked with a group of architects who collaborated with the Santa Clara County Council on Intergovernmental Relations to plan the San José’s Civic Center. The descendant of two pioneer California families, Root was born in Grass Valley but graduated from Berkeley High School and the University of California, Berkeley School of Architecture. He earned his master’s degree in architecture from Harvard University and his architecture license in 1935, remaining in the East Coast briefly to work with Grosvenor Atterbury and Norman Bel Geddes. Root returned to California in 1936 to partner with William L. Higgins in Higgins & Root, after the Dean of U.C. Berkeley’s architecture school recommended him to Higgins. During World War II, Root had a two-year stint with the Army Corps of Engineers. Root was the first architect appointed to the Santa Clara County Planning Commission, where he served from 1947-1957 with two terms as chair. He later joined the Los Gatos Town Planning Commission for eight years, where he also became chair. In 1976, Root joined the design review board of the San Francisco Bay Area Conservation and Development Commission. He was a founding member and chapter president of Santa Clara Valley Chapter of the American Institute of Architects.278 See also Higgins & Root Associates, AIA.

Ruth, Going and Curtis, Inc.

See Norton S. Curtis & Associates.

Shimamoto, George G.

George Shimamoto (ca. 1905-1994) designed the San José Betsuin Buddhist Church (1934-1937, eligible for the National Register of Historic Places) at 640 North Fifth Street in Japantown. Born in Japan, Shimamoto moved to California in 1918. Before World War II, he designed Buddhist churches in San José, San Francisco and Oakland. During the war, he and his family were interned in California and Utah. From 1944 to 1975, he was a draftsman for the architectural firm of Kelly & Gruzen, and later became an associate, general manager and then a partner of the Gruzen Partnership. Among other commissions, he designed a residence for Gov. Nelson A. Rockefeller and a teahouse for Laurance S. Rockefeller.279

Skidmore, Owings & Merrill

Founded in Chicago in 1936, Skidmore, Owings and Merrill (SOM) is one of the most highly-awarded and best-known architectural firms in the world. In 1956, SOM designed the Greyhound Terminal in San José, on Almaden Avenue, between Post and San Fernando streets. Nielsen & Nielsen built the facility. The firm’s history contains many architectural highlights. A mere three years after it was founded, SOM executed the master planning, design coordination, and exhibit design for the 1939 World’s Fair in New York City. In 1952, SOM designed the landmark Lever House on Park Avenue in New York City. The corporate headquarters, with its blue-green glass façade and stainless steel mullions, was one of the first glass-walled International Style office buildings in America. In 1959, the firm designed the award-winning Crown Zellerbach building, the first International Style glass curtain wall building in San Francisco. In 1963, SOM designed the iconic Cadet Chapel at the United States Air Force Academy in Colorado Springs, as well as the Master Plan and design of the entire campus. The Cadet Chapel is a succession of seventeen glass and aluminum spires, each with 100 tetrahedrons. In 1961, SOM received the first Firm Award ever presented by the American Institute of Architects. In 1974, the firm designed the Sears Roebuck Tower in Chicago,

formerly the tallest building in the world. Construction on the Infinity Tower in Dubai, United Arab Emirates – which will be the tallest building in the world – is expected to end in 2011.

Sobey, Gifford E.
Active in the 1940s-1960s, at least, architect Gifford E. Sobey practiced in San José and Los Gatos. In 1960, Sobey designed the Prince of Peace Lutheran Church on Saratoga Avenue in Saratoga. In 1963, he designed a six-story commercial and residential project in Los Gatos.

Steinberg, Goodwin (“Goody”)
See Steinberg Group.

Steinberg Group (The)
Founded in San José in 1953 by Goodwin “Goody” Steinberg, FAIA (born 1922), The Steinberg Group now operates as Steinberg Architects. The firm’s portfolio includes residential, civic, educational, commercial, industrial, hotel, retail and public projects in the Santa Clara Valley. Steinberg designed more than 700 “modern” homes and hundreds more traditional tract homes for developers in San José, San Carlos and Cupertino. He also designed the Tech Museum of Innovation in San José. He explained part of his design philosophy: “The face, modern or traditional, or Spanish or Colonial, that is cosmetic. The bone structure of how that building fits on that site, the bone structure of how the rooms work with each other, the bone structure of the quantity of light gets into those rooms, and the bone structure of how those rooms are related to views are important to me.” Goody studied with internationally known Modernist architect Mies van der Rohe at the Illinois Institute of Technology, graduated from the University of Illinois, and studied at Fontainebleau School of Fine Arts. He worked for his father Edward Steinberg, a prominent Chicago architect, for a few years and then started practicing architecture in the San

Francisco Bay Area. Goody’s son, Robert T. Steinberg, FAIA now heads the company. The firm maintains offices in San José, San Francisco and Los Angeles.282

Stieber, Conrad H.

Stone, Edward Durell

Internationally renowned and award-winning architect Edward Durell Stone, FAIA (1902-1978) designed the Wells Fargo Building (1965) on the corner of The Alameda and Hedding in San José. The steel-framed, six-story building is clad in Stone’s trademark decorative concrete exterior paneling. Designed as both Wells Fargo’s Peninsula division headquarters and a branch bank, it replicates Stone’s National Geographic Society Building (1961) in Washington, D.C. Stone designed many civic buildings, cultural institutions, schools, religious buildings, hospitals, theatres, housing, hotels, factories, research campuses, commercial structures, master plans, and other projects around the world. His Bay Area projects included the Stanford-Palo Alto Medical Center, Palo Alto Civic Center, and the Palo Alto and Santa Clara main libraries. His other notable commissions included New York’s Museum of Modern Art, the Kennedy Center of the

Performing Arts in Washington, D.C., the U.S. Embassy in New Delhi, India, and the interior of Radio City Music Hall in New York City. Known as an early proponent of the International Style and a later adherent of post-modern Formalism, Stone had a profound architectural impact from the 1950s until his death. *Time* magazine described him as “a pioneer modernist, undoubtedly the profession’s freest spirit and by general consensus the most versatile designer of his generation.” His firm had several offices, operating as Edward Durell Stone, Inc. in Palo Alto and Los Angeles, and Edward Durell Stone & Associates in Chicago and New York City. Stone was educated at the University of Arkansas, Harvard University, and the Massachusetts Institute of Technology.284

Stout, Wallace R.

Wallace R. Stout (1907-1978) earned his bachelor’s of architecture degree from the University of Washington in Seattle in 1933. He worked in San José as a draftsman for architect Edward W. Kress (1935-1936, 1939-1941). He was also a draftsman for the San Francisco architectural firms of Frederick H. Reimers (1933-1934), Masten and Hurd (1934-1935), James H. Mitchell (1936-1937), and Gardner H. Dailey (1937); and for Harry J. Devine in Sacramento (1938-1939). He worked in Honolulu from 1941-1944, then became an architect for the Public Works, Naval District in Seattle (1944-1945) and a designer for McClelland and Jones, Architects in Seattle (1945-1946).285

Stromquist, Walter S.

Architect Walter S. Stromquist (born 1912) was a partner in the Palo Alto firm of Clark, Stromquist, Potter, Ehrlich Partnership, which was founded in 1945. His partners were architects Birge M. Clark, David Farington Potter, and Joseph Ehrlich. With Birge Clark, Stromquist designed the H.M. Gousha Company building (1946) in San José. Stromquist earned his

bachelor’s of architecture degree from the University of California, Berkeley in 1937.
Stromquist was previously a draftsman for David B. Clark and Birge M. Clark in Palo Alto
(1937-1942) and a draftsman for Blanchard & Maher in San Francisco (1942-1944). He was
Secretary-Treasurer of the American Institute of Architects Coast Valleys Chapter in 1951 and
President in 1954.286 See also Clark, Stromquist, Potter, Ehrlich Partnership.

Taliesin Associated Architects
Taliesin Associated Architects of Scottsdale, Arizona designed the San José Center for the
Performing Arts (1972, Candidate City Landmark). Frank Lloyd Wright founded and was
chairman of the firm. William Wesley Peters (1912-1991) worked with Wright from 1932 until
Wright’s 1959 death, with a two-year absence in private practice during that time. He served as
the structural engineer and project architect on many Wright-designed buildings such as
Fallingwater (1936) in Bear Run, Pennsylvania, the Johnson Wax Building (1936-1944) in
Racine, Wisconsin and the Guggenheim Museum (1959) in Manhattan. Peters became chairman
of Taliesin Associated Architects after Wright died. He designed more than one hundred
buildings around the world.287

Tatarian, Zaven
See Donald Francis Haines-Zaven Tatarian & Associates; Haines, Donald Francis; and Haines
Tatarian Ipsen & Associates.

Treseder, Frank C.
Architect Frank C. Treseder, AIA worked out of San José and Los Gatos, and served on the Los
Gatos Planning Commission for sixteen years. With architects Kress & Winston, Frank Treseder
designed the girls’ gym (1962) at Los Gatos High School, which a newspaper article described as

286 “Start of New School,” *San José Mercury*. “Joseph Ehrlich,” Pacific Coast Architecture Database. “Clark,
sporting the “box-like look.” The Archives of American Art at the Smithsonian Institution has two 1946 letters from Treseder to the renowned Modernist architect Marcel Breuer.288

Walter, Alan M.
See Alan M. Walter & Associates, Inc.

Ward, J. Francis
The work of architect J. Francis Ward, AIA (1898-1970) was featured in the San Francisco Museum of Art’s 1949 exhibit and catalogue Domestic Architecture of the San Francisco Bay Region. The exhibit featured fifty-one houses designed by about thirty-five firms and architects, including such Bay Area luminaries as Gardner Dailey and the firm of Wurster, Bernardi & Emmons. It explored the mid-century development of California and Bay Area architecture, at a point when traditional and contemporary influences were combining to form a regional design aesthetic. Born in New Zealand, Ward was based in San Francisco and originally associated with architect Albert Farr (1869-1945) from 1922 to 1942. In 1942, he joined forces with architect John Bolles, and during World War II the two collaborated on housing projects in Marin City and Oakland. When the war ended, they formed a partnership, which ended in 1954. Bolles and Ward’s Richard Walberg House (1946) at 16 Spruce Street in San Francisco was featured as “Tomorrow’s House Today!” in Architect & Engineer magazine. It had 213 electrical outlets, fluorescent kitchen lighting, a garbage disposal, and an automatic garage door. In 1962, Ward and George Ikeda designed the new $400,000 Sumitomo Bank of California branch at First and Ayer streets in San José. The two-story “modern” bank was built of concrete, steel, glass and St. Peters travertine marble, with a Japanese garden and a bridge over a lily pond. Sakura Construction Co. was the contractor.289 See Bolles, John S.

Ward & Bolles

See Bolles, John S.; Ward, J. Francis.

Weeks, William H.

William H. Weeks (1864-1936) was a prolific architect who designed about 1,200 schools in California, including San José’s Woodrow Wilson Junior High School (1925, eligible for the National Register of Historic Places, Candidate City Landmark), Herbert Hoover Junior High (now Middle) School (1930, eligible for National Register of Historic Places, City Landmark) and Roosevelt School. He designed many San José buildings between 1907 and 1931, including the De Anza Hotel (1931, National Register of Historic Places, City Landmark), the Hotel Sainte Claire (1926, National Register of Historic Places, City Landmark), and the Medico-Dental Building (1928, National Register of Historic Places). Working in many different styles, his residential, ecclesiastical, civic (including many Carnegie libraries) and commercial buildings can be seen all over the Bay Area. His main office opened in San Francisco in 1905 and designed many post-1906 Earthquake buildings in the city. Weeks opened several branch offices over the next few decades, including the San José office in 1926.290

Wertheim & van der Ploeg

The architectural firm of Wertheim & van der Ploeg designed the Bonsai Nursery (1960, Structure of Merit) at 966 South De Anza Boulevard in San José. The firm operated as Ernest Wertheim, Landscape Architect from 1940 to 1953; then as Wertheim & van der Ploeg from 1953 to 1976; and finally as Wertheim, van der Ploeg, & Klemeyer (WVK), which still exists today. The firm’s projects include residential, commercial, institutional, and public commissions, and it offers architectural, landscape architectural and planning services. The Bonsai Nursery commission reflects the firm’s internationally known specialty in garden center and retail nursery design and space planning. Founder Ernest Wertheim, ASLA is a landscape

architect who graduated from Horticultural College Ahlem in Germany and the University of Berlin.291

Whitmon, E.P.

Los Gatos architect E.P. Whitmon advertised in the San José city directory in the 1940s.292

William W. Hedley Jr. & Associates

Founded by William W. Hedley, Jr. (ca. 1930-1987), the San José architectural firm of William W. Hedley Jr. & Associates designed many commercial, municipal and apartment buildings in the Santa Clara Valley and wider Bay Area. In 1970, the firm was commissioned to design the San José Convention Center. Hedley earned the American Institute of Architects Civil Defense Award for designing Watsonville City Hall (1966), and the Xerox Award for designing the Redwood Shores Information Pavilion (1969). He also designed the Municipal Court Building (1964) in Sunnyvale, Campbell City Hall, Campbell Library, Cupertino’s community center, and Monte Sereno’s Mark Twain High School. In 1971, Hedley’s firm became Hedley & Stark. Hedley earned his architecture degree from the University of Illinois.293

Wurster, William W.

William W. Wurster (1895-1973) was a prolific Modernist architect in the Bay Area. He started his career as a draftsman for San Francisco architect John W. Reid, Jr. He left Reid’s office to open his own shop and was principal of William W. Wurster, Architect, from 1925-1942. His office was in Berkeley in 1925, but he moved it to San Francisco the following year. From 1945 until his death in 1973, he was a partner with Wurster, Bernardi and Emmons in San Francisco. Wurster was involved with the design of many California buildings, focusing on commissions in the Bay Area but also taking on projects like Case Study House #3 (1945-1949) in West Los Angeles, Temple Emanu-el (1956) in Dallas, Texas, and the United States Consulate Office.

292 Polk’s *San José California City Directory* (1940), 676.
Building (1960) in Hong Kong. His firm’s Bay Area projects included many residences, plus large commissions such as the Golden Gate International Exposition, Yerba Buena Pavilion (1937-1939) on Yerba Buena Island in San Francisco; Stanford University’s Center for Advanced Study in Behavioral Sciences (1953-1955); and the Bank of America World Headquarters Building (1960-1969) at 555 California Street in San Francisco. In San José, the firm of Wurster, Bernardi and Emmons designed the Richmond-Chase Office Building (1946) for the local cannery, Richmond-Chase Company. See Wurster, Bernardi and Emmons.

Wurster, Bernardi and Emmons, Architects

The work of Wurster, Bernardi and Emmons was featured in the San Francisco Museum of Art’s 1949 exhibit and catalogue Domestic Architecture of the San Francisco Bay Region. The exhibit featured fifty-one houses designed by about thirty-five firms and architects, including such Bay Area luminaries as Gardner Dailey. It explored the mid-century development of California and Bay Area architecture, at a point when traditional and contemporary influences were combining to form a regional design aesthetic. The catalogue included “A Personal View,” a piece by William W. Wurster. The firm did residential, commercial and institutional projects, including the Richmond-Chase Office Building (1946) in San José, designed by Donn Emmons. See also Bernardi, Theodore C.; Emmons, Donn; and Wurster, William W.

Wyckoff, Ralph

Architect Ralph Wyckoff (1883-1956) was one of San José’s most prolific architects in the twentieth century. He designed many schools, including the Anne Darling School; the former Willow Glen Grammar School; San José State University structures such as the Speech Building, Science Building (1932, now Washington Square Hall, designed with Charles McKenzie), and Theater Arts Building (1950s); the old Salinas High School; and the Washington School in Santa Clara. His San José public buildings include the $305,000 old Main Post Office (1932-1933,

National Register of Historic Places, contributor to City Landmark District) at North First and East St. James streets, and the County Jail at the Civic Center. In 1935, Wyckoff also designed a $25,000 “modern automobile service station” at the southwest corner of Market and San Pedro streets for Baumgartner Bros. He designed the Anglo-California National Bank Building (1942, now the San José National Bank, eligible for the National and California Registers, City Landmark) at 101 West Santa Clara Street, the Moderne Drugstore Building downtown, and the San José National Bank at Market and Santa Clara streets. In 1946, the City of San José selected Wyckoff, Kress & Gibson, Binder & Curtis, and Higgins & Root to design four new fire stations at Sixth and Taylor streets (Higgins & Root), Sixth and Julian streets (Binder & Curtis), Minnesota Avenue near Iris Court in Willow Glen, and Seventeenth and Santa Clara streets. Wyckoff started out as a draftsman for William H. Weeks in Watsonville and San Francisco, where he worked on replacement building designs after the 1906 earthquake. He earned his architecture license in 1914, established a Berkeley office, then returned to Watsonville to assume the business of architect H.B. Douglas. In 1919, Wyckoff went into business with Hugh White in Salinas, but moved the firm to San José in 1921 to take advantage of the local building boom. Wyckoff received a scholarship to L’Ecole Des Beaux Arts in Paris.296

Young, Ron D.
San José architect Ron D. Young, AIA designed the now-demolished Coldwell Banker Building, at North First and Rosemary. His office was at 90 East Gish Road, San José.297

LANDSCAPE ARCHITECTS

Baylis, Douglas
Landscape architect Douglas Baylis, FASLA (1915-1971) worked with architect John S. Bolles on IBM’s Cottle Road campus in San José. Baylis worked for famous Bay Area landscape architect Thomas D. Church (1902-1978) for four years and then started his own firm. Thomas Church, Garrett Eckbo (1910-2000), Robert Royston (1918-2008) and Baylis are known as the founders of the “California School” of modernism in landscape architecture. Baylis and Joan Parry wrote the monograph *California Houses of Gordon Drake* in 1956. He graduated from the University of California, Berkeley with a landscape architecture degree in 1941.298

Folendorf, Robert
In 1966, Los Gatos landscape architect Robert Folendorf worked with Higgins & Root Associates, AIA, on the site development program for the Santa Clara County Superior Court complex at North First and St. James streets in San José. The program included a mall, pool and fountains.299

Martin, George
Los Gatos landscape architect George Martin was on the team of design professionals that created the much-heralded former Santa Clara County Welfare Building (1963) at 55 West Younger Avenue. It has been changed extensively and is now the home of the Santa Clara County Office of the Sheriff.300

Williams, Edward Ames
As both a landscape architect and city planner, Edward Ames Williams helped design and plan San José’s growth from 1936 into the late 1960s. During his tenure, San José’s population grew

299 “Mall, Pool, Fountains Soon To Replace Hall of Records,” *San José Mercury*.
300 Welfare Building Dedication Program.
from 80,000 to about 400,000, and the area increased from twenty to one hundred square miles. He served as assistant planning director to Michael Antonacci, the planning director who oversaw the city’s massive expansion for three decades. He again served as acting planning director after Antonacci retired. As a landscape architect, he designed several San José parks and the layouts for dozens of subdivisions. A San José native, Williams graduated from San José High School, the University of California, Berkeley, and Iowa State University, where he earned a master’s degree in landscape architecture. He created a master plan for Ames, Iowa as his master’s thesis. He also created a master plan for the City of San José.301

BUILDERS, CONTRACTORS, DEVELOPERS, ENGINEERS, AND SURVEYORS

A.E. Margherita and Sons, Inc.
Anthony E. Margherita (ca. 1904-1982) founded and was president of the San José masonry contracting firm of A.E. Margherita and Sons, Inc. Born in Italy, Margherita was an apprentice stonemason with his father Salvatore Margherita, a Boston masonry contractor. The younger Margherita also became a Boston masonry contractor, but moved with his own family to San José in 1946. His company worked on most of San José’s first housing developments and played a key role in the post-war building boom in the 1940s and 1950s. He retired in 1980, but his sons Robert, Eugene and Richard continued to work for the firm for some time afterwards.302

Anderson, Oscar
See O.E. Anderson Co.

Artificial Stone Works
Owned and operated by masonry contractor Anthony Polizzi (ca. 1895-1983) for more than four decades, Artificial Stone Works completed projects around California. Polizzi opened his cinder block company in Long Island, New York before moving to California in 1929. He reopened the company at 911 North Fourth Street in San José before World War II. He manufactured and installed cinder blocks, and did the brick work in the patio of the former City Hall (1957).303

Baldwin, H.
Builder H. Baldwin was active in San José in the 1930s. In 1932, Baldwin built the Horace Allen Gas Station at 505 E. San Carlos Street. One of nine San José General Petroleum gas stations in the mid-1930s, this Tudor Revival gas station did not reflect the Modernist designs that characterized many local gas stations built in the next few decades.304

Barnhardt Construction
Barnhardt Construction built the San José Center for the Performing Arts (1972, Candidate City Landmark) at 241-271 Park Avenue. Taliesin Associated Architects designed the building.305

Barrett Construction Co.
Barrett Construction Co. was the general contractor for the $1.5 million County Jail (1957).306

Bartran, Paul W.
Working with Higgins & Root Associates, AIA, Paul W. Bartran was the contractor for the $150,000 regional shopping center built in 1952 at the northwest corner of Stevens Creek Boulevard and Santa Clara-Los Gatos Road. Original tenants included a supermarket, drive-in restaurant, gift shop, liquor store, and barber shop.307

B.E.M. Co.
In 1965, B.E.M. Co. announced the construction of a $600,000, seven-story building on the southwest corner of Redwood and Bailey avenues, between Valley Fair shopping center and the Emporium. Designed by John Bruno, AIA of Bruno & Kobashi of San José, the plans developed by realtor A. DeGennaro called for specialty retail stores on the ground and first floors, plus four stories of offices and a residential penthouse.308

Blackwell, Jack
See Blackwell Homes.

Blackwell, Ken
See Blackwell Homes.

306 “Civic Center Skyline,” San José Mercury, July 29, 1957.
Blackwell Homes
Sons of a Santa Rosa-area contractor, brothers Ken and Jack Blackwell founded Blackwell Homes during the post-war building boom, taking advantage of opportunities on the fringes of the growing metropolis of San José. They built the Melody Park, Montevideo, and Meadowlands developments and more than 12,000 homes in the Santa Clara Valley since 1950. Jack Blackwell focused on land acquisition while Ken Blackwell ran the construction end of the business. They played a key role in building the Saratoga United Presbyterian Church and developing the Eastfield Ming Quong campus in Los Gatos.309

Bogdanich Building Co.
In a mere ninety-two days in 1953, Bogdanich Building Co. built the first twenty modular units designed by Higgins & Root Associates, AIA for San José Junior College.310

Bohannon, David D.
See David D. Bohannon Organization.

Bohannon Development Company
See David D. Bohannon Organization.

Boitano, Fred D.
Builder Fred D. Boitano (ca. 1924-1989) worked for various home builders from the 1950s through 1986, including Duc and Elliot Co. of San José, Estate Homes of Campbell, and the Gregory Group of San Mateo, where he joined the firm as construction superintendent in 1979.311

Borchers Bros.
Borchers Bros. operated in San José from 1896 through 1984, and supplied building materials, steel products and aluminum products.312

Bothwell, Gordon
See Gordon Bothwell Concrete Construction Co.

Bridges, H.A.
See Bridges Construction Co.

Bridges Construction Co.
The firm of contractor H.A. Bridges worked on numerous structures in the Santa Clara Valley, including the 1937 $10,000 remodeling of the Hotel San José at 369 North Market Street. In 1946, the firm also built a new $65,000, reinforced concrete structure at Stockton Avenue and Clinton Street in San José for Warner Press, a religious publishing house from Anderson, Indiana. The construction firm worked with Higgins & Root Associates, AIA on both projects. Bridges also built Fire Station No. 1 (1951, eligible for the National and California Registers, Candidate City Landmark) at 201 North Market Street, which Binder & Curtis designed.313

Brundage, Charles R.
Builder and developer Charles Brundage (ca. 1909-1977) founded several building and development firms in the San José area. A San José native, he worked at a bank before switching gears and entering the construction business in 1936. He built individual homes before developing subdivisions throughout the Santa Clara Valley, as well as in Antioch, Pittsburg and Redding. Brundage acquired the Gilroy Lumber Company in 1944. During World

312 “Arthur Caldwell, board chairman for Borchers Bros.,” San José Mercury, November 11, 1984. Polk’s San José California City Directory (1975), front cover.

Caldwell, William C.
See Caldwell’s Woodworking Shop.

Caldwell’s Woodworking Shop
William C. Caldwell (ca. 1915-1982) was an inventor, cabinetmaker, and owner of Caldwell’s Woodworking Shop in San José. His company specialized in store fixtures, custom furniture, and power tools, including some of his own inventions. He created the “Cald-Well Hung Door,” a pre-hung interior door-and-frame assembly. He produced fifty a day and they were used in housing subdivisions and in individual residences throughout San José in the 1950s and beyond. Caldwell’s other inventions included the “Cald-Well Built Speaker (a stereo speaker that could be mounted anywhere) and the first mirrored walls used in supermarket produce aisles. He built many windows and doors in Marriott’s Great America, in Santa Clara. Caldwell was president of the Santa Clara Valley Cabinet Makers Association in 1950.

Calor Construction Co.
By the 1950s, the Calor Construction Co. was a well-known local builder. The company’s Lawrence Manor development in Sunnyvale (on Lawrence Road just off the Bayshore Highway) was featured in the 1954 subdivision tour as part of National Home Week.

Camp and Sondeno
Camp and Sondeno built mid-century subdivisions in the Santa Clara Valley, including Castle Crest off Moorpark Avenue near Meridian Road. In 1954, the homes “of conventional

314 “Aptos Builder Dies; Rites on Tuesday,” San José Mercury, January 30, 1977.
construction – three bedrooms – one and a half baths, at a moderate price with attractive surroundings” were featured in the National Home Week subdivision tour of thirty-six sites.317

Campisi, Jimmy T.

See Campisi Plastering.

Campisi Plastering

San José native and former U.S. Air Force Major Jimmy T. Campisi (ca. 1917-1984) owned and operated Campisi Plastering from about 1954 until his retirement in 1980. He specialized in stucco work and design of residential and commercial buildings. His projects included the John Robert Powers building near Stevens Creek Boulevard and Highway 17, as well as Art Cleaners on Santa Clara Street in downtown San José, for which he received an award of excellence from the Plasterers Association. Campisi graduated from Heald Business College in San José and majored in business at San José State University.318

Caputo, Dan

San José native Dan Caputo (1910-1992) earned his contractor’s license at age 21 and founded Dan Caputo Co., a family business prominent in the Santa Clara Valley. Caputo Acres, a subdivision in West San José at Moorpark Avenue, was featured in the 1954 Santa Clara Valley subdivision tour as part of National Home Week. As of his death, Caputo had served on the San José Planning Commission for longer than any member in history, for twenty years ending in 1976. His firm built commercial and industrial buildings, stores, schools, bridges, freeway overpasses, and light-rail underpasses. Dan Caputo Co. won many awards, including a merit award for the Eugene Doran Bridge on Interstate 280 in San Mateo County. The bridge was named America’s most beautiful medium-span, high-clearance bridge of 1969, and the firm built it without harming any trees.319

317 “Valley Subdivision Tour Highlights Celebration Of National Home Week,” San José Mercury News.
Carl N. Swenson Company

Founded by Carl Swenson (ca. 1885-1974), the Carl N. Swenson Company was the oldest and largest general contracting firm in San José at Swenson’s death. His obituary noted that “probably every resident in the San José area has at one time or another been in a building that Swenson and his company constructed.” A native of Sweden, Swenson moved to California from Iowa in 1912. After founding his company, living in Glenn and Stanislaus counties, and working on small scale commercial and industrial projects there, Swenson built San José’s Medico-Dental Building (1925) at Sixth and East Santa Clara streets. He subsequently moved to the Santa Clara Valley. His San José projects had included the De Anza Hotel (1931, National Register of Historic Places, City Landmark); the Moderne Style Tide Water Associated Service Station (1940, Structure of Merit, City Conservation Area) at 1490 Park Avenue; Wahlquist Library (1942, demolished) at San José State University; Anglo-California National Bank (1942, now the San José National Bank, eligible for the National and California Registers, City Landmark); the $1 million Beech Nut Packing Plant (home of History San José) at 1650 Senter Road; San José City Hall (1957); Art & Health Building at San José State University (1950s); wind tunnels at Ames Laboratory at Moffett Field; IBM’s Cottle Road Campus (1950s); the Swenson Building (1963, San José’s first high-rise office building); the main terminal at what was then called the San José Municipal Airport; the former Dr. Martin Luther King, Jr. Main Library Building (completed 1970) at 180 W. San Carlos Street; Frito-Lay Inc. plant; Willow Glen High School; the fourteen-story Bank of America building on Market Street; the San José Mercury and News publishing plant (1967); and many other schools and office buildings.320

Carpenter, G.S.

Active in San José at least during the 1930s, G.S. Carpenter built an eight-unit stucco apartment house, constructed around a central courtyard, at 340 South Tenth Street for W.E. Oglesby.321

Century Concrete
Operated by brothers Bud (1916-1996) and James Griffiths (ca. 1923-1987), Century Concrete produced ready-mix concrete. The company saw demand reach its height during the building boom of the 1950s and 1960s. It eventually merged with several other concrete suppliers.322

Charles R. Brundage and Co. Land Development
Founded in 1957, Charles R. Brundage and Co. Land Development was one of several building and development firms created by Charles R. Brundage. Brundage built subdivisions throughout the Santa Clara Valley and in Antioch, Pittsburg, and Redding.323 See also Brundage, Charles R.

Chin & Hensolt, Inc.
The structural engineering firm of Chin & Hensolt worked on IBM’s Cottle Road campus (1950s) in San José, as well as the Transamerica Pyramid (1972, by William L. Pereira Associates) in San Francisco. In business for more than a half-century, it closed in 2007.324

Cortelyou-Cole, Inc.
The Mountain View contracting firm of Cortelyou-Cole, Inc. built Higgins & Root’s $225,000 Bank of America branch (1962) at Foxworthy Avenue and Almaden Road, a stone veneer, single-story building with a mezzanine.325

Crinklaw, Warren F.
Warren F. Crinklaw (died 1971) was an award-winning Santa Clara Valley general contractor. He worked on Higgins & Root’s 42,000 square foot Tempress Industries electronic plant (1970) at 980 University Avenue in Los Gatos, which Factory Magazine honored as one of the ten most beautiful factories in the United States in 1970. Crinklaw also built the chapel of the Lima-
Salmon-Erickson funeral home, the St. Francis Episcopal Church in Willow Glen, and numerous schools. His last completed building was the First National Bank (1971) on Santa Teresa Boulevard and Cottle Road. After serving in World War II, he worked as a contractor for Leonard English Construction Co. in Santa Cruz for a year, after which he moved to San José to start his own business. He was a member of the Builders Exchange of Santa Clara County.326

D. Tomacci and Son

With the contracting firm of O.W. Meyer Construction Co., D. Tomacci and Son built the August Boeger School (1965, by Higgins & Root) in the Mt. Pleasant School District.327

Daly Brothers

In 1939, Daly Brothers built the Moderne gas station at 154 East Santa Clara Street for the San José Abstract Company.328

Dan Caputo Co.

Founded by San José native Dan Caputo, the Dan Caputo Co. built commercial and industrial buildings, stores, schools, bridges, freeway overpasses, and light-rail underpasses in the Santa Clara Valley. The firm won many awards, including a merit award for the Eugene Doran Bridge on Interstate 280 in San Mateo County. Named America’s most beautiful medium-span, high-clearance bridge of 1969, it was built without harming any trees.329 See also Caputo, Dan.

David D. Bohannon Organization

Founded by former real estate salesman David D. Bohannon in 1928, the David D. Bohannon Organization (and the Bohannon Development Company) is a nationally-famous, award-winning builder and developer based on the Peninsula. By the 1930s, the company was known across the country for its subdivisions. It has since built thousands of homes and many commercial

327 “School Named For August Boeger,” San José Mercury.
projects, like the Hillsdale Shopping Center (1954). Two of the firm’s subdivisions were featured in the 1954 Santa Clara Valley subdivision tour, held as part of National Home Week. One, the Mayfair Heights development in San José’s East foothills (White Road and Buckner Drive), had already “received ready acceptance by young homemakers of the area.” The other development on the tour, Westwood, was in Santa Clara with a model home on Saratoga Avenue.330 See also Bohannon, David D.; Bohannon Development Company.

Demmon-Hunter Co.

Owner-developer Demmon-Hunter Co. of Palo Alto built the $3 million, 13-story First American Title Building at North First and Taylor streets in 1966.331

Domrose, G.L.

See G.L. Domrose and Sons.

Donald L. Stone Homes

Real estate developer Donald L. Stone founded Donald L. Stone Homes and Stone & Schulte. He built more than 5,000 homes in Santa Clara County and Northern California (including Castro Valley, Newark, Walnut Creek and Concord) in the 1950s and 1960s. When development funds dried up in the late 1960s, Stone lost his fortune and moved to Tulsa, Oklahoma.332 See Stone, Donald L.; Stone & Schulte.

Doyle and Newell

The contracting firm of Doyle and Newell built many homes in the Santa Clara Valley after World War II, as well as many schools in the San José area. See also Newell, Corwin.333

331 “Under Way,” San José Mercury News, February 27, 1966, 5F.
333 “Corwin Newell, 86, contractor,” San José Mercury News, October 14, no year, biographical files of History San José.
Duc & Elliot Co.

Duc & Elliot Co. was a San José residential building company, operating at least in the 1970s. The Berryessa neighborhood featured Duc & Elliot homes, including 2969 Tobin Drive.334

E.A. Hathaway & Co.

Founded by Ernest Hathaway, the San José contracting firm of E.A. Hathaway & Co. (established in 1923) merged with Dinwiddie Construction (established in 1911 by W.S. Dinwiddie) in 1996 to become Hathaway Dinwiddie Construction Group. In 1999, the firm changed its name to Hathaway Dinwiddie Construction Co. When they merged, the firms were two of the oldest construction companies on the West Coast. Among many other mid-century San José projects completed with Higgins & Root, E.A. Hathaway built the Lincoln Glen Elementary School (1950) at 2175 Lincoln Avenue; a firehouse for Engine Co. No. 5 (1948) at Sixth and Taylor streets; and a $40,000 “modern plant” for Navlet’s floral business on the west side of The Alameda between Keeble Avenue and Race Street, featuring an extensive use of glass. In March 1949, Progressive Architecture featured images of an office and built-in desks attributed to Higgins & Root and E.A. Hathaway & Co. Today, the company specializes in building advanced technology facilities, including micro-electronics, semiconductor and bio/pharmaceutical facilities, plus office buildings, interior improvements, seismic retrofits, and special purpose facilities. The firm has built the Getty Center in Los Angeles, Bank of America’s World Headquarters, and the Transamerica Pyramid (1972, by William L. Pereira Associates). The firm has offices in San Francisco, Santa Clara and Los Angeles.335

334 “Fred D. Boitano, 65, builder,” San José Mercury.
Earl W. Heple Corp.

Founded by Earl W. Heple in 1945, the Earl W. Heple Corp. was a prominent San José contracting firm. At the time of Heple’s death at age 43 on a job site, the company was described as “probably Santa Clara Valley’s largest construction firm.” Heple founded his own firm after inheriting the contracting firm started by his family about twenty-five years earlier. His firm built many schools in Santa Clara County; the Naval Reserve Armory at Nineteenth and Mission streets in San José; San José Ford Sales; a store on Meridian near Willow; part of the Hamilton Air Base; the Bayshore Highway underpass east of Santa Clara-Alviso Road (1935); the viaduct (1941) across the American River, between Sacramento and North Sacramento; and the Rob Roy cutoff between Santa Cruz and Watsonville. In 1946, Heple built Higgins & Root’s $75,000, two-story, reinforced concrete building for R.H. Hartman Electrical Co. at 842 South First Street. The firm engaged in general building, excavating, grading, road construction, plastering and trucking, and its offices were located at 494 Delmas Avenue. Elmo W. Pardini worked for Heple before opening his own firm.336 See also Elmo W. Pardini, Inc.

Edwards, Bruce C.

See Roof Structures, Inc.

Eichler, Joseph

Builder and developer Joseph Eichler built around 11,000 homes in the Bay Area between 1949 and 1974. Around 1959, the Palo Alto-based Eichler Homes built 550 residences in San José’s Fairglen neighborhood, designed by the firm of Jones & Emmons. The long-term collaboration between Eichler, Jones and Emmons began in 1950, when the Architectural Forum’s December issue announced that the magazine had given Eichler the “Subdivision of the Year” award, and that the American Institute of Architects had given Quincy Jones the first Honor Award in residential architecture. Eichler saw it and called Jones, and in January 1951 he commissioned Jones & Emmons to design a new Eichler subdivision. Designed in the Post-and-Beam Style,

Eichler homes feature open plans, wide expanses of glass, and a street-facing garage or carport. The homes were extremely popular when they were built, and are still highly sought after today. Eichler also collaborated with other architects, including the San Francisco firm of Anshen & Allen. See Jones, A. Quincy; Emmons, Frederick E.

Eichler Homes
See Eichler, Joseph.

Eitzert Jr., Henry
See Eitzert Sheet Metal Works.

Eitzert Sheet Metal Works
Henry Eitzert, Jr. (ca. 1886-1981) operated the Eitzert Sheet Metal Works (1920-1964) for more than four decades, with a break during World War II when he worked for Food Machinery Corp. At his retirement, he was one of the last metal workers still specializing decorative architectural molding. The company did custom work on many of San José’s downtown buildings. Eitzert was a member of San José Masonic Lodge No. 10 for almost a half-century, and was honored as San José’s oldest living mason when the cornerstone from the demolished downtown Masonic Temple was moved to the temple’s new South San José site in September 1979.

Elmo W. Pardini, Inc.
For a quarter of a century, engineer Elmo W. Pardini (1911-1981) operated his contracting firm, Elmo W. Pardini, Inc. His prominent contracting firm built many churches, halls, schools, and commercial and industrial buildings in the Santa Clara Valley. His work included a majority of Santa Clara County canneries, plus office buildings and shopping centers. He constructed churches such as St. Martin’s in San José, St. Justin’s in Santa Clara, and St. Mary’s in Los Gatos. He built St. Christopher’s School and part of Notre Dame High School in San José.

338 “Rites held for retired contractor,” San José Mercury, April 22, 1981.
Before opening his own business, he was a long-time project manager for Earl W. Heple Construction Co. He earned his engineering degree from the University of Santa Clara.

Feather, Laurice D.

San José building contractor Laurice D. Feather (ca. 1892-1975) helped build the Rosicrucian buildings on Naglee Avenue in San José, and houses in the Santa Clara Valley. As a ranch hand, Feather learned carpentry in his spare time. He opened his own business, retiring in 1959.

Fletscher-Peterson

San José builders Fletscher-Peterson built the stucco and glass California State Automobile Association headquarters (1952, by Higgins & Root) at The Alameda and Idaho Street. Talking about the move to the new headquarters building, CSAA director Fred J. Oehler observed that “exceptional growth of the association in this county has necessitated expanded facilities, not only to serve members here, but to handle the increased volume of travel in this region.”

Frank Pisano Associates

See Pisano, Frank.

G.L. Domrose and Sons

G.L. “Gus” Domrose owned and operated the G.L. Domrose and Sons masonry contracting firm for four decades, from about 1945 until his death in 1985. His son, James A. Domrose, Sr., carried on the business after that. The firm helped build the Santa Clara County Department of Social Services, the Oak Hill Memorial Park mausoleum, the Carmelite Fathers monastery in the eastern foothills of San José, Homestead High School, and St. Justin’s Catholic Church in Santa Clara. Gus Domrose was a former president of the Masonry Contractors Association of Santa Clara County and the Masonry Institute of the Bay Area. Domrose started out as a brick mason in Chicago. During World War II, he worked in defense plants and helped produce the first

atomic bomb in Hanford, Washington. In 1945, immediately before founding G.L. Domrose and Sons, he moved to San José and worked as a brick mason for a San José contractor. When he died, he was the oldest active licensed masonry contractor in the Santa Clara Valley.342

Ganiats Construction Inc.

Founded in 1926, Ganiats Construction Inc. built the Mount Pleasant housing development at White and Story roads in San José in 1958. A full-page illustrated advertisement in the *San José Mercury News* offered a “choice of either California Ranch Style or Contemporary design, spacious 2 bath family room plans, one or two car garage, and many, many other features for more comfortable living.” The three-bedroom homes started at $11,500.343

George O. Nelson Contracting Co.

George O. Nelson (ca. 1898-1982) was a plastering contractor and land developer who founded the George O. Nelson Contracting Co. He was also a partner in Zisch, Nelson and Owen Co., which developed much of the Lincoln Glen area of San José. After serving in World War I, Nelson used the plastering skills his father Niklous taught him, and he started the George O. Nelson Contracting Co. In 1933, he plastered the small offices ringing the top of Hangar One at Moffett Field. He also did ornamental plaster work in San José’s Rosicrucian Museum, and in the museum’s replica of King Tut’s tomb. His contracting firm did much of the plastering work in many of San José’s new subdivisions in the 1940s. Working with San José State University in the early 1950s, Nelson helped develop “Perlite,” the first lightweight plaster. Nelson was a former president of the San José Builders Exchange.344 See also Zisch, Nelson and Owen Co.

Gilroy Glass Co.

See LeDeit Glass and Mill, Inc.

344 “George Nelson, plastering contractor,” *San José Mercury*, October 14, 1982.
Goodnight, J. Dale

From 1946 to 1979, J. Dale Goodnight built custom homes in the Santa Clara Valley. A 1939 graduate of San José State University, he also taught industrial arts in local schools.345

Gordon Bothwell Concrete Construction Co.

Founded by Gordon Bothwell, the Gordon Bothwell Concrete Construction Co. operated all over San José. With twenty employees during its peak from 1949-1976, the company produced many San José sidewalks, driveways, storm drains, patios, and commercial buildings.346

Gresham, Conrad

See Gresham Construction Co.

Gresham, Joseph N.

See Gresham Construction Co.

Gresham Construction Co.

Founded in 1946 by Joseph N. Gresham (died 1966) and later operated by his son Conrad Gresham (ca. 1928-1988), the Gresham Construction Co. built many subdivisions in the Santa Clara Valley. The Santa Clara-based company also built hundreds of temporary housing units for the federal government and the military. During the Korean War, the Federal Housing and Finance Agency chose it and five other firms to build portable and temporary housing near bases for defense workers and the military. The firm built two hangars at Moffett Field Naval Air Station after World War II; built more than 600 homes for the Navy at Moffett Field, on Homestead Road in Santa Clara; installed mobile homes near the Marine Corps base at Twentynine Palms for the military; built low-cost Air Force housing at California and Oregon bases; and built 200 homes for workers on the Glen Canyon Dam on the Colorado River.347

Griffiths, Bud
See Century Concrete.

Griffiths, James D.
See Century Concrete.

Guerra, Michael
After working for Joshua Hendy Iron Works as a carpenter, plumber and welder during World War II, Michael Guerra (1909-1993) founded Guerra Realty Co. He was active for more than forty years; his sons operated the company after his death. After the war, Guerra built apartment houses and rented them to San José State University students, and also helped Japanese residents returning from internment camps buy homes. His other projects included an office building at Hamilton and Meridian (later the Moose Lodge) and office buildings on Bascom Avenue.348

Guerra Realty Co.
See Guerra, Michael.

Gurries, Richard M.
See Gurries and Okamoto, Inc.

Gurries and Okamoto, Inc.
The San José mechanical engineering firm of Gurries and Okamoto, Inc. designed the mechanical systems for many San José and Santa Clara commercial and industrial buildings, including the seventeen-story Silicon Valley Financial Center in Park Center Plaza. The firm also designed mechanical systems for many power plants around California. Richard M. Gurries (ca. 1923-1990) was president of the firm for thirty years.349

Haas & Haynie

The San Francisco contracting firm of Haas & Haynie helped build the John S. Bolles-designed IBM campus at Cottle Road (1950s), along with contractor Carl N. Swenson.350

Haggerty Jr., Frank

Frank Haggerty, Jr. (ca. 1930-1986) was a shopping center developer who worked for Hapsmith Co. for more than twenty years. See Hapsmith Co.351

Hainer, John W.

See John Hainer Painting Co.

Hapsmith Company (The)

Real estate attorney Frederick M. Nicholas (born 1920) and real estate broker Maurice O. (“Hap”) Smith (died 1975) founded The Hapsmith Company in 1956. Since developing its first shopping center in Fremont (with the second Mervyns store ever built), the firm has developed and owned shopping centers and office tower complexes throughout California and around the country. The company built the Eastridge Shopping Center in San José and Tanforan Park in San Bruno, on the site of the former Japanese relocation camp at Tanforan Race Track, where Nicholas was an Army guard during World War II. The company is based in Culver City.352

Hathaway, Ernest A.

See E.A. Hathaway & Co.

Heinrichs, Leroy A.

See Technobuilders.

Heple, Earl W.
See Earl W. Heple Corp.

Herschbach, Robert C.
Brothers Robert C. Herschbach and Thomas H. Herschbach were contractors who built most of the pre-World War II homes in San José’s Willow Glen neighborhood. Robert Herschbach reportedly owned the first automobile in the Santa Clara Valley.353

Herschbach, Robert D.
A builder and architect who belonged to the Herschbach contracting family, Robert D. Herschbach (1907-1992) was a “big builder” before World War II and a small, independent builder after the war ended. He earned his architecture degree from the University of California at Berkeley, and held the second contractor’s license issued by the State of California.354

Herschbach, Thomas H.
Brothers Thomas H. Herschbach (ca. 1887-1948) and Robert C. Herschbach were contractors who built most of the pre-World War II homes in San José’s Willow Glen neighborhood. In 1910, Herschbach joined the Joseph Rucker Co. as a real estate and insurance salesman, but went into business for himself in 1912 as a builder and property owner. He built the Bank of America building at First and Santa Clara streets and owned several downtown properties, including the Twohy Building where he had his offices.355

Holmgren, Kenneth A.
See Roof Structures, Inc.

354 Ibid.
355 Ibid.
Holseth, Gilbert H.
See Wilkinson Construction Co.

Hoyt, Frank L.
A prominent San José contractor and civic leader, Frank L. Hoyt (ca. 1881-1939) worked in all aspects of contracting, from carpentry to engineering, for about twenty-five years.\(^{356}\)

Hudson, Joseph A.
See Hudson Co.

Hudson Co.
Founded in 1967 by Joseph A. Hudson (ca. 1896-1987) and his sons Robert and Eugene, the Hudson Co. was a San José land development company specializing in building commercial properties, apartments and condominiums.\(^{357}\)

Hughes Construction Co.
Formerly called Mobilhome, Hughes Construction Co. built mid-century subdivisions in the Santa Clara Valley. The company was known for its excellent construction and “color harmonized homes.”\(^{358}\)

Inland Empire Builders
Led by founder and president Walter Roeder, Inland Empire Builders built hundreds of houses in the San José region after 1955, including the Friendly Woods, White Oaks Manor, Princeton Homes, Westgate, and Thunderbird Homes subdivisions. In 1959, Roeder founded the Great

\(^{358}\) “Valley Subdivision Tour Highlights Celebration Of National Home Week,” San José Mercury News.
Oaks Water Company and subdivided Edenvale Farm, the former horse ranch south of San José, opening the way for local development in that area.359 See Roeder, Walter.

James Construction Company

Founded by carpenter and contractor John James O’Neill in 1945, the James Construction Company operated in the San José area. O’Neill was a foreman on the crews that built the hangars at Moffett Field.360 See also O’Neill, John James.

John Hainer Painting Co.

Founded by San José resident John W. Hainer (ca. 1921-1993) after World War II, the John Hainer Painting Co. was a longtime painting contracting firm in the Santa Clara Valley.361

Kirk, Clarence H.

See Kirk, Miriam E.

Kirk, Miriam E.

Clarence H. and Miriam E. Kirk (ca. 1912-1983) were commercial and residential developers in San José. The Kirks sold several thousand acres of the Willow Glen-area Kirk Ranch for development, and Miriam Kirk included language in sales agreements requiring that long-lasting, quality homes be built on the land. Miriam Court in Willow Glen is named after Miriam Kirk.362

Kocher Construction Co.

In 1941, the Kocher Construction Co. built 105 homes in the Lansford Tract area of Willow Glen. The firm designed and built many commercial buildings, apartment houses, and residences throughout the San José area. In 1948, owner and architect George S. Kocher saw a need for low-cost housing and created the Mobile Home Corp. of San José. The company sold

\begin{itemize}
 \item 359 “Funeral Arranged For Noted Developer,” *San José News*, January 20, 1972.
 \item 360 “Ex-Contractor O’Neill Dies,” *San José Mercury*, August 30, 1975.
 \item 361 “John W. Hainer, 72, painting contractor,” *San José Mercury News*, August 5, 1993.
 \item 362 “Miriam Kirk, 71, S.J. developer,” *San José Mercury*, December 2, 1983.
\end{itemize}
more than 160 homes within nine months, building five- or six-room homes in a central place and moving them to a buyer’s site after the units were sold. See also Kocher, George S.

L. Cedric Macabee Company

The L. Cedric Macabee Company was a consulting engineering firm in the 1940s and 1950s. See Tonkin, Robert W.

Lamb, N.A.

Campbell contractor N.A. Lamb built the Santa Clara Valley Blood Center (1949, by Higgins & Root) at 440 North First Street in San José. The project was covered extensively in the press. Vice Admiral Ross T. McIntire of the National Blood Program, former Surgeon General of the U.S. Navy and President Franklin D. Roosevelt’s personal doctor, was the guest speaker. The headquarters of four counties’ programs, the Blood Center was “the finest and best equipped plant of its kind in the United States. Since San José was the second city west of the Rockies and one of the first half dozen in the nation to be included in the National Blood Program, the Center operation here has served as pattern for others throughout the West.” Because blood centers were a new concept, Higgins & Root performed extensive research before creating the “modern design” and N.A. Lamb “added a few new wrinkles of its own in following the blueprints.”

Larson, Roy

See Technobuilders.

LeDeit, Camille F.

See LeDeit Glass and Mill, Inc.

LeDeit Jr., Sylvain

See LeDeit Glass and Mill, Inc.

363 “George Kocher, architect and builder,” *San José Mercury*.
LeDeit Glass and Mill, Inc.

In 1909, Sylvain LeDeit, Sr. founded LeDeit Glass and Mill, Inc. (1909-ca. 1968) on Lenzen Avenue in San José. The company later merged with another glass company, and LeDeit bought out the partners in 1932. The firm created the stained-glass windows in many San José area churches. The company also had a South County branch, called the Gilroy Glass Co. In later years, Sylvain LeDeit, Jr. and his wife Camille F. LeDeit operated the firm.365

Margherita, Anthony E.

See A.E. Margherita and Sons, Inc.

Mark Thomas Co.

The Mark Thomas Co. was a civil engineering firm in San José during World War II.366 See Frank Pisano.

McInerney, Joseph

In 1954, Joseph McInerney (ca. 1920-1990) founded Starlite Homes in Milpitas. The company built thousands of Santa Clara County residences. In its first fifteen years, Starlite built about 1,500 homes, including a 900-home planned community on 170 acres northeast of the Nimitz Freeway and Trimble Road; the 700-home Starlite Hills tract on Warm Springs Boulevard; and The Pines and Willowdale developments. McInerney was president of the Santa Clara-Santa Cruz Contractors and Builders Association, the Northern California Home Builders Conference, and the Milpitas Chamber of Commerce.367

McKeon Construction Co.

A McKeon Construction Co. development was featured in the 1954 Santa Clara Valley subdivision tour, held as part of National Home Week. Country Club Gardens, at McKee Road

and Toyon Avenue in the East foothills of San José, offered “all city improvements, excellent transportation, good schools and finely constructed homes in a setting of panoramic beauty.”

Meyer, Oscar W.
See O.W. Meyer Construction Co.

Mozzone, Joe
Master bricklayer Joe Mozzone, a native of Italy, lived in the San José area for sixty-six years and worked on many homes in San José, Saratoga and the Almaden Valley.

Napier, J. Donald
J. Donald Napier (1906-1985) was a painting contractor after World War II until his retirement in the 1970s.

Nelson, George O.
See George O. Nelson Contracting Co.

Newell, Corwin
Corwin Newell was a partner in the contracting firm of Doyle and Newell until his retirement in the 1960s. The building firm owned by his father, John S. Newell, built Notre Dame High School and Hester Bank. His grandfather, James P. Newell, was a carpenter on the Winchester House in San José. See Doyle and Newell.

Newgren, Claude
See Newgren Brothers.

368 “Valley Subdivision Tour Highlights Celebration Of National Home Week,” *San José Mercury News.*
371 “Corwin Newell, 86, contractor,” *San José Mercury News*, October 14, no year.
Newgren, Einar
See Newgren Brothers.

Newgren, John
See Newgren Brothers.

Newgren, Lloyd
See Newgren Brothers.

Newgren Brothers
The four Newgren brothers operated two construction-related businesses in the San José area. The Newgren Brothers concrete construction firm specialized in building housing subdivisions from the 1940s into the 1960s. Siblings John and Einar Newgren (graduate of San José High School and Heald Business College) owned and operated the business. Einar Newgren retired in 1963 after about twenty-five years at the firm. After serving in World War II, brothers Claude (1913-1996) and Lloyd Newgren formed a concrete contracting firm in San José. For about fifty years, ending in 1994, the company laid hundreds of streets, sidewalks, driveways, curbs, and gutters throughout San José. Before going into business with his brother Claude, Lloyd Newgren worked with their father, Peter John Newgren, a cement mason.

Nielsen & Nielsen
San José general contractor Nielsen & Nielsen executed the 1949 Higgins & Root-designed remodel of the fire-damaged Sainte Claire Club at Second and St. James streets. In 1951, the firm also built a Higgins & Root-designed complex of five shops and four medical and dental offices built for Herschel C. Graham, manager of F.W. Woolworth Co. The stone, brick and stucco complex was built next to the First National Bank on Business Street (now Business

Circle) near Flagg Avenue. Nielsen & Nielsen built the Greyhound Terminal (1956, by Skidmore, Owings and Merrill) on Almaden Avenue, between Post and San Fernando streets.374

Nishiura, Gentaro

See Nishiura Construction.

Nishiura, Harry

Harry Nishiura (1906-1997) worked with his father and uncle at Nishiura Construction. He also designed houses in North San José.375 See Nishiura Construction.

Nishiura, Shinzaburo

See Nishiura Construction.

Nishiura Construction

Brothers Shinzaburo and Gentaro Nishiura founded Nishiura Construction in the early twentieth century. The company built houses; Japanese pavilions for the 1915 and 1939 World Fairs; the San José Betsuin Buddhist Church (1934-1937, by George Shimamoto, eligible for the National Register of Historic Places) at 640 North Fifth Street in Japantown; Kuwabara Hospital (ca. 1910, later the Japanese American Citizens League building, a City Landmark); the Watanabe Building; the Palm Garden Bar; and a Shanghai restaurant (demolished) in Japantown.376

Ochs, W.J.

General contractor W.J. Ochs built the Santa Clara County Courthouse in 1932, replacing one destroyed by fire in May 1931.377

377 “Million and Half to be Spent on Public Buildings: Postoffice [sic], Armory, Agnew and State College Structures Scheduled,” San José Mercury.
O.E. Anderson Co.

Founded by Oscar Anderson (1908-1996), the O.E. Anderson Co. operated for more than four decades. Anderson worked for the Carl N. Swenson Co. contracting firm from 1927 to about 1940, followed by six years working for Roy M. Butcher Electric during World War II. After founding his own firm in 1947, he built many school buildings, including San José State University’s Sweeney Hall and women’s gymnasium; Santa Clara University’s Benson Center and engineering building; San José City College’s Speech Arts Building (1963); buildings at Foothill College; and buildings at De Anza College. Other San José projects included the Department of Motor Vehicles on Alma Street and Quement Electronics on Bascom Avenue.378

O’Neill, John James

Founded in 1945 by carpenter and contractor John James O’Neill (ca. 1907-1975), the James Construction Company operated in the San José area. O’Neill was a foreman on the crews that built the hangars at Moffett Field, and was a member of Carpenters Union Local No. 317. He also owned and managed the Douglas Hotel in San José until the City acquired it for an urban renewal project.379 See also James Construction Company.

O.W. Meyer Construction Co.

General contractor Oscar Meyer of the O.W. Meyer Construction Co. worked with Higgins & Root on many commissions in the San José area. Their joint projects included a chapel (1949) built in honor of Frances R. Schallenberger at the St. Francis Episcopal Church at Pine and Washington avenues in Willow Glen; the Memorial Chapel (1952) at San José State University; a modern Gothic-influenced Calvin Presbyterian Church (1955) at Meridian Road and Fruitdale Avenue; the $80,000 Penn Mutual Life Insurance Co. headquarters building (ca. 1955) on The Alameda, south of Idaho Street; the 1963 remodel of Higgins & Root’s old offices at 220 Meridian Avenue, which the firm updated for a new tenant; and the August Boeger School

379 “Ex-Contractor O’Neill Dies,” San José Mercury.
(1965, with D. Tomacci and Son) in the Mt. Pleasant School District. In 1951 and 1955, the company built the addition and canopies for the Googie/Coffee Shop Modern Style 5 Spot Drive-In (1931, 1951/1955, City Landmark) at 869 South First Street.380

Pardini, Elmo W.

See Elmo W. Pardini, Inc.

Pederson, Holger

Prolific contractor Holger Pederson worked on many buildings in the mid-century period, including a variety of buildings designed by Higgins & Root Associates, AIA. Pederson’s projects included the Santa Clara County School Department headquarters (1952) at 2320 Moorpark Avenue, placed in a renovated former Army barracks taken from Hollister Municipal Airport. Pederson also built the $30,000 addition to the Rosicrucian Egyptian-Oriental Museum and Art Gallery (1953), built in the “latest architectural design.”381

Piazza, Salvatore

See Piazza Lathing and Plastering Co.

Piazza Lathing and Plastering Co.

Salvatore “Sam” Piazza (1905-1995) operated the Piazza Lathing and Plastering Co. for almost five decades. Piazza got a very early start in the building trades, building his first house at age seventeen, on Irving Avenue in San José’s Burbank District. The company specialized in residential plastering before the 1950s building boom, and afterwards switched to commercial projects such as IBM’s Cottle Road campus, Ames Research Center, Rosicrucian Museum, and Santa Clara Valley schools, banks and civic buildings. The company employed as many as 180

employees in the early 1970s, and worked with general contractors such as Carl N. Swenson Co., E.A. Hathaway & Co., Dan Caputo and Frank Pisano.\(^{382}\)

Pisano, Frank

Construction engineer Frank Pisano (ca. 1908-1985) was very active in the building trades in the Bay Area for many decades, starting in 1930. A registered engineer in six states, he specialized in the almost invisible but critically important facilitators of metropolitan growth: underground utilities, sewer systems, and water importation systems. After graduating with a bachelor’s degree in civil engineering from Santa Clara University in 1930, Pisano was the inspector of construction on the old Hale Building on First Street in San José. He subsequently worked as a construction engineer for the American Bridge Co., which built the Bay Bridge. During the Great Depression, Pisano was the chief engineer for a Works Progress Administration sewer project in the South Bay. During World War II, he was supervising manager of the San José civil engineering company of Mark Thomas Co. After the war, he founded Pisano Brothers, which built the main utilities for most of Santa Clara Valley’s aerospace firms, as well as many underground utilities from San Francisco to Monterey. He founded San José-based Frank Pisano Associates in 1962, which designed sewer systems and sewage treatment plants. He worked on restoration and structural engineering issues for local churches, including San José’s Holy Family Church. As an expert in earthquake zone geology and construction, Pisano’s skills were sought on foundation construction and erosion problems. He was Capitola’s and Half Moon Bay’s city engineer, and served as president of the California Pacific Engineers board of directors, a group of twenty-two engineering firms that designed the $42 million San Luis Reservoir water importation system in the Santa Clara Valley. He was a member of Associated General Contractors and was an honorary fellow of the American Society of Civil Engineers.\(^{383}\)

Pisano Brothers

See Pisano, Frank.

\(^{382}\) “Sam Piazza, owner of plastering company,” *San José Mercury News*, December 2, 1995.

\(^{383}\) “Frank Pisano, construction engineer,” *San José Mercury*.
Polizzi, Anthony
See Artificial Stone Works.

Reiter, J.J.
The Rose Garden Addition, a San José development by J.J. Reiter, was featured in the 1954 Santa Clara Valley subdivision tour held as part of National Home Week. Located off Bascom Avenue and University Way, it was “one of the most popular subdivisions on the Peninsula.”

Roeder, Walter
Walter Roeder (1897-1972) wore many hats. He was the founder, owner and president of the Great Oaks Water Company. Roeder was also a developer and president of Inland Empire Builders, which built hundreds of houses in the San José region after 1955, including subdivisions such as Friendly Woods, White Oaks Manor, Princeton Homes, Westgate, and Thunderbird Homes. In 1959, when he founded the Great Oaks Water Company, he subdivided Edenvale Farm, the former horse ranch south of San José. The Water Company opened the way for local development there, and by the time he died, the Water Company served about 9,000 homes around IBM’s Cottle Road campus in San José. See also Inland Empire Builders.

Romani, Joseph J.
A Santa Clara County contractor and developer for at least four decades, Joseph Romani (1914-1986) was the business manager for Romani Brothers Plastering Company from 1930-1946 and active in Romani Brothers Construction Company (with his three brothers) from 1946 until his 1968 retirement. Romani Brothers Construction Company built residential and commercial buildings in the San José region, including subdivisions and shopping centers such as Kings Court, Giant Super, and King and Tully Center in San José, and the Argonaut in Saratoga. See also Romani Brothers Construction Company; Romani Brothers Plastering Company.

384 “Valley Subdivision Tour Highlights Celebration Of National Home Week,” San José Mercury News.
385 “Funeral Arranged For Noted Developer,” San José News.
386 Ibid.
Romani Brothers Construction Company
Formed by the four Romani brothers in 1946, the Romani Brothers Construction Company built residential and commercial buildings in the San José region, including subdivisions and shopping centers such as Kings Court, Giant Super, and King and Tully Center in San José, and the Argonaut in Saratoga. See also Romani, Joseph J.; Romani Brothers Plastering Company.

Romani Brothers Plastering Company
Romani Brothers Plastering Company (predecessor to Romani Brothers Construction Company) operated in San José from at least 1930 to 1946. See also Romani, Joseph J.; Romani Brothers Construction Company.

Roof Structures, Inc.
In 1966, Kenneth A. Holmgren (1932-1994) and Bruce C. Edwards founded Roof Structures in the Santa Clara Valley. With offices in San José, Fremont, Phoenix and Seattle, the firm produced the laminated beams used to frame roofs over manufacturing plants and warehouse-type stores. By 1994, the firm had roofed over 100 million square feet of industrial space.

Rosenbaum, Edward
Before building single-family housing developments in the Edenvale section of San José in the 1960s, developer Edward Rosenbaum (ca. 1900-1996) bought land and developed homes in East Menlo Park, Palo Alto and Mountain View. He bought hundreds of vacant acres in the Snell, Branham, Capitol Expressway areas and developed them in the mid-1980s.

Ryan, Edward F.
Edward F. Ryan (1904-1981) was associated with the development of various shopping centers in the Santa Clara Valley over a fifty-year career. In 1936, he joined the Capital Co. (a

388 Ibid.
subsidiary of Transamerica Corp. as of his death), eventually becoming vice president. When the $18 million Valley Fair Shopping Center was built on Stevens Creek Boulevard in 1956, Ryan was president and director of Valley Fair Corp. He also participated in the development of Mariposa Gardens Shopping Center (Santa Clara) and the Palm Plaza (Mountain View).391

Sakura Construction Co.

In 1962, Sakura Construction Co. built the new $400,000 Sumitomo Bank of California branch at First and Ayer streets in San José. The two-story “modern” bank was built of concrete, steel, glass and St. Peters travertine marble, with a Japanese garden and a bridge over a lily pond.392

Sanfilippo, Phil

Educated at the University of California Hastings College of the Law in San Francisco, Phil Sanfilippo (1915-1997) later became a developer and a founder of the Bank of Santa Clara. After serving in the military in World War II, Sanfilippo and his partner Lionel Tilson participated in the house-building boom of the late 1940s and 1950s. They built 2,000 homes in the Santa Clara Valley, including the Hacienda Gardens subdivision and the Hacienda Gardens shopping center (remodeled) at Meridian Avenue and Blossom Hill Road in San José, Quito Park and Argonaut Plaza in Saratoga, and the Sunnyvale Industrial Park.393

Schulte, Henry L.

Real estate developers Henry L. Schulte (ca. 1909-1980) and Donald L. Stone co-founded Stone & Schulte in 1950. Schulte helped build more than 20,000 homes in the Santa Clara Valley. Besides co-founding Stone & Schulte, Henry Schulte was a sales manager for Blackwell Homes, and had previously founded a large Fresno real estate and insurance firm (1946-1950). He was a member of the Associated Building Industry of Northern California and the San José Real Estate Board.394 See Blackwell Homes; Stone & Schulte.

392 “Ground Broken for Bank,” San José Mercury.
393 “Phil Sanfilippo, 81, builder, college philanthropist,” San José Mercury News, April 17, 1997.
Schutte, Leo A.
Before retiring in the early 1950s, San José native Leo Schutte (ca. 1889-1983) owned and operated a contracting business for about four decades. He built many homes in Willow Glen.395

Shottenhamer, E.
Contractor E. Shottenhamer was active in San José in the 1930s. He built the De Saisset/Moellering & Goodwin Building (now the Voodoo Lounge) on South Second Street in 1931.396

Shulman, Joseph
Real estate developer Joseph Shulman (ca. 1904-1986) built apartments and shopping centers in San José, Sunnyvale, and Santa Clara from the 1950s through the 1970s.397

Starlite Homes
Founded by Joseph McInerney in 1954, the Milpitas-based Starlite Homes built thousands of Santa Clara County residences. In its first fifteen years, Starlite built about 1,500 homes, including a 900-home planned community on 170 acres northeast of the Nimitz Freeway and Trimble Road; the 700-home Starlite Hills tract on Warm Springs Boulevard; and The Pines and Willowdale developments. McInerney was president of the Santa Clara-Santa Cruz Contractors and Builders Association, the Northern California Home Builders Conference, and the Milpitas Chamber of Commerce.398 See also McInerney, Joseph.

Stone, Donald L.
As a founder of the real estate development companies Stone & Schulte and Donald L. Stone Homes, Donald Stone (1919-1994) built over 5,000 homes in Santa Clara County and Northern California (including Castro Valley, Newark, Walnut Creek and Concord) in the 1950s and 1960s. When development funds dried up in the late 1960s, Stone lost his fortune and moved to

397 “Joseph Shulman, 82, retired San José real estate developer,” San José Mercury, April 4, 1986.
398 “Joseph McInerney, 70, built thousands of South Bay homes,” San José Mercury News.
Tulsa, Oklahoma. There, he worked in development and consulting, then founded C.I.S.
Technologies. A 1937 graduate of Santa Cruz High School, Stone served on the President’s
Financial Advisory Council under United States Presidents Dwight D. Eisenhower, John F.
Kennedy and Lyndon B. Johnson. See also Donald L. Stone Homes; Stone & Schulte.

Stone & Schulte
Real estate developers Donald L. Stone and Henry L. Schulte co-founded Stone & Schulte in
1950. Schulte helped build and market more than 20,000 homes in the Santa Clara Valley.
Besides co-founding Stone & Schulte, Henry Schulte was a sales manager for Blackwell Homes,
and had previously founded a large Fresno real estate and insurance firm (1946-1950). Schulte
was a member of the Associated Building Industry of Northern California and the San José Real
Estate Board. Donald Stone also founded Donald L. Stone Homes, and in his two ventures,
Stone built more than 5,000 homes in Santa Clara County and Northern California (including
Castro Valley, Newark, Walnut Creek and Concord) in the 1950s and 1960s. When
development funds dried up in the late 1960s, Stone lost his fortune and moved to Tulsa,
Oklahoma. See also Schulte, Henry L.; Stone, Donald L.

Sunzeri, Vincent Joseph
Vincent Joseph “V.J.” Sunzeri (died 1989) founded his San José construction firm in 1926. In
the mid-1920s, the firm built one of the city’s first housing tracts, off 31st Street, where Sunzeri
built his own home. The firm developed the Crescent Shopping Center on East Santa Clara
Street near Highway 101 in the late 1940s, and built the St. John Vianney Church (ca. 1954) in
East San José. The company also built many prominent downtown San José apartment
buildings, including the Normandy, Lorraine, and Lucy Ann apartments. San José State
University used the Lorraine complex before demolishing it when the school expanded.

399 “Donald L. Stone, 74, major developer in Santa Clara County in ‘50s, ‘60s,” San José Mercury News.
Swenson, Carl N.

See Carl N. Swenson Company.

Technobuilders

Founded in South San José in the mid-1960s by Leroy A. Heinrichs (1937-1998) and Roy Larson, Technobuilders was an ornamental iron company. The co-owners founded the company in the midst of the Santa Clara Valley housing boom, because builders needed railings for two-story decks and other ornamental-iron decorations.402

Thomas, Charles Augustus

Charles A. Thomas (1884-1974) was a self-employed contractor from 1902-1950. He built the San José Civic Auditorium (1934-1936), plus many schools and commercial buildings in the Santa Clara Valley. Born in India to a British military family, he was educated in England but ran away at fourteen to be a sailor. His ship, the *Frankistan*, sank 700 miles from San Francisco in 1901, and he stayed in the Bay Area. He worked first as a carpenter and then in construction, returning damaged Santa Clara Valley homes to their foundations after the 1906 San Francisco earthquake. The first residence he built was on Hobson Street, followed by his own house at 127 Clayton Avenue (1922), one of the first on the block. He built the San José Water Works building, old San José Mercury building, and Pioneer Savings and Loan building.403

Thompson, W.C.

Involved in San José’s post-Depression building boom, Santa Cruz contractor W.C. Thompson built four apartment houses on the site of the demolished Heinlin Mansion on North First Street between First and Second streets, in an area formerly known as Heinlinville. The *San José Mercury* noted that architect Edward W. Kress designed the apartments in the “modernistic style.” Forty-five trees were removed to accommodate the new buildings.404

403 “Civic Auditorium’s Builder Dead at 89,” *San José Mercury*, June 13, 1974, 56.
404 “Four New Apartment Houses To Start in Building Boom,” *San José Mercury*.
Tilson, Lionel

With partner Phil Sanfilippo, Lionel Tilson was a developer during the house-building boom of the late 1940s and 1950s. They built 2,000 homes in the Santa Clara Valley, including the Hacienda Gardens subdivision and the Hacienda Gardens shopping center (remodeled) at Meridian Avenue and Blossom Hill Road in San José, Quito Park and Argonaut Plaza in Saratoga, and the Sunnyvale Industrial Park. See Sanfilippo, Phil.

Tonkin, Robert W.

San José native and land surveyor Robert Tonkin (1916-1983) owned a land surveying business from 1950-1981, working for land developers to survey shopping centers, subdivisions, and other commercial developments in the Santa Clara Valley and along the California coast. Before going out on his own in 1950, Tonkin was a land surveyor for the L. Cedric Macabee Company in San José. He was president of the California Council of Civil Engineers and Land Surveyors, as well as the San José Engineers Club.

Wilkinson Construction Co.

Founded by Gilbert H. Holseth (ca. 1909-1989) and his father-in-law after World War II, the Wilkinson Construction Co. of San José built houses in the Cambrian area in the 1950s and 1960s. Holseth later founded the Gilbert Co. and worked as a real estate agent and insurance broker on Lincoln Avenue in Willow Glen.

Zaima, Paul

Industrial Designer Paul Zaima worked with Higgins & Root on a $40,000 “modern plant” for Navlet’s floral business on the west side of The Alameda between Keeble Avenue and Race Street, featuring extensive use of glass.

405 “Phil Sanfilippo, 81, builder, college philanthropist,” San José Mercury News.
408 Sketch and caption, Higgins & Root Scrapbook, Vol. 1, 86.
Zeller, Asa C.

Contractor Asa Zeller (ca. 1894-1984) was a skilled carpenter who worked on many Santa Clara Valley buildings. Before World War II, he helped build San José’s Woodrow Wilson and Roosevelt junior high schools, as well as the Bank of America building at First and Santa Clara streets. As an independent contractor after the war, he specialized in building small apartment buildings. Before his 1966 retirement, he designed and helped supervise the construction of San José’s Pilgrim Congregational Church at 1721 Dry Creek Road.409

Zisch, Nelson and Owen Co.

George Nelson (ca. 1898-1982) was a plastering contractor and a land developer who founded the George O. Nelson Contracting Co. He was also a partner in Zisch, Nelson and Owen Co., which developed much of the Lincoln Glen area of San José. Around 1959, Nelson and his company (likely Zisch, Nelson and Owen Co.) donated several acres to the City of San José for the new Almaden Expressway. George Nelson and Vernon Owen subsequently built and developed San José’s Lincoln Glen Shopping Center (1963), which Nelson managed until he retired in 1974. Nelson was a former president of the San José Builders Exchange.410 See also George O. Nelson Contracting Co.

410 “George Nelson, plastering contractor,” San José Mercury.
PUBLIC ARTISTS

Armento, Benny
Sculptor and plasterer Benny Armento (ca. 1899-1983) created statutes and fountains after moving to San José in 1952. His work included a statue of St. Maria di Fonti at the Tricarico Club in San José, and a fountain in the plaza of Campbell’s PruneYard Shopping Center.411

Beamer, Scott
Scott Beamer, an Oakland-based internationally known designer of fountains and other water projects, worked with Higgins & Root Associates, AIA and landscape architect Robert Folendorf on the mall, pool and fountains created at the Santa Clara County Superior Court complex (1966) at North First and St. James streets. The main features of the mall included a 100 by 45-foot pool and five fountains.412

Bloch, Lucienne
Artist Lucienne Bloch (1909-1999) designed the colored fascia panels that decorated IBM Building 25 (1957, demolished) and other buildings on the company’s Cottle Road campus in San José. Born in Geneva to renowned Swiss composer Ernest Bloch, she moved to the United States with her family in 1917 and lived in Cleveland until 1925. She studied sculpture at L’Ecole des Beaux Arts in Paris and studied for a year at the Leerdam glass works in the Netherlands. In 1931, she had a one-woman show of her glass sculptures in New York, and Frank Lloyd Wright subsequently invited her to teach at his Wisconsin school. She worked on famous muralist Diego Rivera’s controversial murals at the Detroit Institute of Art and Rockefeller Center. Bloch’s 1933 photographs of Lenin’s figure in the Rockefeller Center mural, secretly taken before the Rockefeller family ordered Rivera to remove it, are the sole visual record of it. She married Rivera’s chief plasterer, Stephen P. Dimitroff. They worked together on frescoes all over the country, including her best work, “The Evolution of Music,” at

411 “Benny Armento, noted sculptor,” San José Mercury, May 9, 1983.
412 “Mall, Pool, Fountains Soon To Replace Hall of Records,” San José Mercury.
Manhattan’s George Washington High School. Bloch’s artwork included sculptures in glass, wood and terra cotta; a famous series of photographs of Frida Kahlo, renowned painter and wife of Diego Rivera; and photographs of workers strikes for *Life* and other publications.413

Hollingsworth, Norman

For sixty-nine years, Norman “Holli” Hollingsworth (1910-1998) painted commercial signs in the San José area. Son of a house painter, Hollingsworth diligently practiced his future trade using a sign painting instruction book given to him by his father. Hollingsworth got his first job in the 1920s, after he volunteered to help a florist who had difficulty painting a sign. After graduating from high school, he apprenticed with Redwood City sign painter Charles H. Doxsee and later worked with San José sign writer Gerhard E. Campen. Among his most memorable jobs was replacing the gold-leaf lettering on A.P. Giannini’s San José branch of the Bank of Italy with gold-leaf “Bank of America” letters in 1930.414 During the Depression, Hollingsworth’s work was constant, because so many businesses closed and new businesses opened, creating a high demand for signs. When Apple Computer was just starting business, Hollingsworth was hired to paint the Apple logo on the side of a building, drawing a crowd of spectators.415

Howard, Robert B.

Muralist and sculptor Robert B. Howard (1896-1983) was involved with IBM’s Cottle Road campus. In the 1920s, Howard created exterior plaster ornamentation for the San Francisco Synagogue. He did a lot of work with architect Timothy Pflueger on the San Francisco Stock Exchange (1923), including sculptural reliefs and murals in the lunch club on the top floor and six panels in the trading room. Howard also sculpted the phoenix over the front entrance of Coit Tower in San Francisco. He worked steadily during the Depression, thanks to government commissions. Howard studied at the California School of Arts and Crafts in Berkeley (now in

Oakland) and the Art Students League in New York City. The San Francisco Museum of Modern Art owns several of his artworks.416

Nissen, Robert

In 1962, Redwood City sculptor Robert Nissen (born ca. 1924) completed his first commission, a 13’x17’ sculpture of six people of varying ages, representing humankind. The figural group hung on the side of the former Santa Clara County Welfare Building (1963) at 55 West Younger Avenue, designed by Higgins & Root. Describing the $7,400 sculpture in 1962, Nissen noted that “Most sculptors now completely ignore the figure and go into abstraction. Or else they turn in the opposite direction to pseudo-Greek. I have tried to do something that will appeal to the people and satisfy myself artistically. …The figure means a great deal to me. I try to interpret the human factor in man.” Higgins & Root asked Wendell Gates of the San José Art Commission to recommend a sculptor to execute a work “to enliven their building’s plain brick façade,” and Gates recommended Nissen, his former student. A Daly City high school teacher when the work was commissioned, Nissen had studied at San José State University and earned a master’s degree in art from Stanford. The building has been heavily remodeled and is now the home of the Santa Clara County Office of the Sheriff.417

Power, Eugene J.

The work of sculptor and San José native Eugene Power (ca. 1900-1978) has graced many public buildings, schools, museums and churches throughout the Santa Clara Valley. Sculpting for a half-century, Power created the columns and ornamental features of the San José Civic Auditorium (1934-1936) on West San Carlos Street, the Sphinx statues and columns at the Rosicrucian Museum, and the art work on the front of the Mission at the University of Santa Clara. Brothers Eugene and Richard Power owned and operated Powers Pottery for many years

until Eugene retired in 1970. He attended St. Joseph’s School in San José, and then studied architecture and stone carving with his grandfather, a designer and shipbuilder.418

Power, Richard
See Power, Eugene J.

Powers, Harry
Glazed brick muralist Harry Powers created art for the YMCA (1958) on The Alameda and the former Santa Clara County Welfare Building (1963), now the home of the Santa Clara County Office of the Sheriff at 55 West Younger Avenue. He designed a four-panel mural for the YMCA, on an eight by sixty-five foot wall visible from the large glass façade windows. Members of the Y’s Men’s Club painted the mural, which Powers drew and labeled with the appropriate colors. Powers designed four “impressionistic sports subjects” in pastels, reds and greens: a basketball backboard and swooshing net; a reverberating punching bag; a volleyball; and balls and a badminton shuttlecock. Powers was based in Los Altos and Santa Clara.419

Powers Pottery
See Power, Eugene J.; Power, Richard.

Schafer, Ben
At the time a nationally-known sculptor, Ben Schafer designed a five-foot tall, bleached redwood relief of St. Francis for a chapel (1949, by Higgins & Root) at St. Francis Episcopal Church, at 1205 Pine Avenue in Willow Glen. The sculpture of animal-loving St. Francis with birds and a deer was a gift from the women of St. Francis Circle (a mothers’ group in the congregation). Schafer other ecclesiastical commissions included sculptures of Moses, Jesus, and Mary Magdalene. He studied at the National Academy of Art in Chicago, was a protégé of the

sculptor Lorado Taft (1860-1936), and a studio assistant to architect, artist and designer Alfonso Iannelli (1888-1965). He was a member of the Association of Arts and Industries in Chicago.420

Schnittmann, Sascha S.

Sculptor Sascha S. Schnittmann (1913-1978), known as the “biographer in bronze,” accepted commissions from around the world. He lived in the Santa Clara Valley from 1965 until his death. His work included a 16-foot sculpture in the San Antonio Shopping Center in Mountain View, and the “Morgan Horse” sculpture in the Santa Clara civic center. He also sculpted a 60-foot tall Indianapolis monument honoring World War II dead, and a 54-foot tall San Diego sculpture representing the Four Freedoms. His international work included a bust of Martin Luther King, Jr. in Stockholm, Sweden, where King accepted the Nobel Prize; and an 87-foot high bronze of the Virgin Mary of Fatima, a commission from the government of Portugal.

Woods, Gurdon

Gurdon Woods (ca. 1915-2007) created an outdoor sculpture, “Research,” for Building 25 on IBM’s Cottle Road campus in San José. An educator and studio artist, his work is in Bay Area museums and private collections. Woods trained at the Art Students League in New York and served in World War II. From 1955 to 1965, he was the director of the California School of Fine Arts (renamed the San Francisco Art Institute in 1961) in San Francisco. In 1966, he created and chaired the fine arts department of the new University of California, Santa Cruz campus. He designed its first curriculum and facilities, and started several nationally respected experiments in interdisciplinary undergraduate art education. Woods wanted art students to study all of the arts, sciences and humanities, rather than simply focus on art techniques or study art history. Woods left U.C. Santa Cruz in 1974, after which he became the director of the Otis Art Institute in Los Angeles and deputy director of programs for the Los Angeles Natural History Museum.421

BIBLIOGRAPHY

Books

Christensen, Terry and Charlene Duval, Ellen Garboske, Phil Grasser, Judith Henderson (Editor), and Mary Jo Ignoffo. *Reflections of the Past: An Anthology of San José*. Encinitas, CA: Heritage Media Corporation, 1996.

Polk’s San José California City Directory. San Francisco (or South El Monte), California: R.L. Polk & Co. of California, 1920-1975.

Newspaper and Magazine Articles

“$30,000 Building Contracts to be Let in San José.” *San José Mercury,* November 25, 1943.

“$90,000 Will Be Spent On Three Downtown Jobs: Building Projects Evidence of Confidence in Good Business Ahead.” *San José Mercury,* March 17, 1935.

“After 45 Years, BofA Opens New Main Office.” Unknown newspaper, June 15, 1971. San José Library California Room.

Albee, Wilson E. “San José’s Answer to ‘Hard Times’ Cry Being Written By $4,000,000 in New Building.” *San José Mercury,* August 10, 1930.

“Aptos Builder Dies; Rites on Tuesday.” *San José Mercury,* January 30, 1977.

422 The prolific Santa Clara County architectural firm of Higgins & Root, Associates, AIA kept large scrapbooks of newspaper articles, dedication programs, and other materials about the firm’s work. These volumes are now in the archives of History San José (History San José collection, accession 2008-131: American Institute of Architects, Santa Clara Valley Chapter materials). In the Bibliography, these volumes are abbreviated as “Higgins & Root Scrapbook, Vol. __.” If the source newspaper for an article was clear, that information is given here, without noting that the article was in the Scrapbook. If the source newspaper was unclear, the article’s citation notes that it can be found in the Higgins & Root Scrapbooks.

“Bank to Construct Drive-In Branch At First, Willow,” San José Evening News, August 27, 1958.

“Benny Armento, noted sculptor.” San José Mercury, May 9, 1983.

“Bids Being Taken on Sal. Army Home.” San José Mercury, October 9, 1928.

“Building Record Expected Here in Coming Year.” *San José Mercury*, December 29, 1929.

“Building Record Here Praised By State FHA Head: Anglim Declares S.J. Home Construction Mark Envy of Other Communities.” *San José Mercury*, May 10, 1936.

“C. LeDeit, 74, helped family make glass.” *San José Mercury*, November 11, 1989.

“City Council Will Not Officially Protest Liquor License on Market.” *San José Mercury*, July 30, 1946.

“Civic Auditorium’s Builder Dead at 89.” *San José Mercury*, June 13, 1974.

“Civic Center Skyline.” *San José Mercury*, July 29, 1957.

Couchman, Robert. “$10,000,000 To Be Expended on 1930 Building Projects Here: Greatest Development Program in City’s History Already Mapped Out.” San José Mercury, January 1, 1930.

“County Building Giant Swenson Dies.” San José Mercury, November 29, 1974.

“Einar Newgren, 75, retired contractor.” San José Mercury, October 22, 1983.

“Frank Hoyt, contractor, is called.” Biographical files of History San José, December 14, 1939.

“Greyhound To Build New $500,000 Bus Depot In San José.” San José Evening News, October 11, 1956.

“Ground Broken for Bank.” San José Mercury, July 12, 1962.

“Has San José Reached Annexation Limit?.” Palo Alto/Peninsula Times-Tribune, December 21, 1959.

“Joseph Shulman, 82, retired San José real estate developer.” *San José Mercury*, April 4, 1986.

“Landmarks Fall in City’s Drive on Fire Hazards.” *San José Mercury*, August 29, 1928.

“Mall, Pool, Fountains Soon To Replace Hall of Records.” *San José Mercury*, November 9, 1966.

“Million and Half to be Spent on Public Buildings: Postoffice [sic], Armory, Agnew and State College Structures Scheduled.” *San José Mercury*, January 1, 1932.

“New Building to Be Erected on First St.” *San José Mercury*, March 2, 1932.

Ogg, Mary. “Fall School Jam To Be Worse.” *San José Mercury News*, June 6, 1948.

“Oscar Anderson, 87, South Bay builder.” *San José Mercury News*, May 1, 1996.

“Possibilities of Modernization to be Demonstrated: Ancient Structure Will be Completely Rebuilt on Downtown Location.” San José Mercury, September 9, 1934.

“Prominent Contractor Is Drowned.” Unknown newspaper, no date. Biographical files of History San José.

“Public Building Work Urged Here to Aid Jobless: Immediate Construction of Proposed Projects Sought by Trades Council.” San José Mercury, March 8, 1930.

“Rites held for retired contractor.” San José Mercury, April 22, 1981.

“San José Dream of Civic ‘Castle in Spain’ Brought to Complete Realization.” *San José News*, April 13, 1936.

“San José Holds Building Lead Over Other Cities: Eleven Percent Decrease in Construction Reported for Pacific Coast.” *San José Mercury*, January 15, 1929.

“San José Leaders Study Future Growth.” *San Francisco Examiner*, June 20, 1954.

“San José’s First National Bank Begins 90th Year With New Look.” *San José Mercury*, September 1, 1963.

“School Named For August Boeger.” *San José Mercury*, February 6, 1965.

“Six Rooms to be Added to School.” *San José Evening News*, October 8, 1947.

“SJCC Center.” *San José Mercury*, October 1, 1962.

“Start of New School.” *San José Mercury*, November 12, 1958.

“Three San José Companies Make $100,000 Additions.” *San José Mercury*, May 28, 1933.

“Two-tenths of a child may be key to Union district growth.” *West Valley Life*, February 13, 1959.

“Unique $30,000 Building To Go Up On First St.: New Structure Provides For Ten Stores, Eight Facing Pretty Inner Court,” *San José Mercury*, March 20, 1932.

“Wells Fargo To Build On Alameda.” *San José Times*, March 5, 1964.

“Wells Fargo to Build on Alameda.” *San José Times*, March 5, 1964.

City of San José Planning Documents

Antonacci, Michael H. *Retail Commercial Areas: A Presentation to the Annual Conference League of California Cities, City Planners’ Department*.

City of San José, Department of Planning. *City of San José Annexation Index*, October 2001, revised July 2, 2007.

City of San José, Department of Planning. *City of San José Historic Resources Inventory*. June 4, 2009.

City of San José, Department of Planning. *City of San José Infill Development Strategy; Population and Land Area Growth: 1860-2000*.

City of San José, Department of Planning. *First Annual Six-Year Capital Improvement Budget: 1948-1949 to 1953-1954*.

City of San José, Department of Planning. San José: Design for Tomorrow, 1961.

City of San José, Department of Planning. San José Shapes Its Future, 1957.

City of San José, Department of Planning. San José Designated Historic City Landmarks. June 1, 2009.

City of San José, Planning Commission. 1964 Annual Report.

City of San José, Planning Commission. Planning San José: Background for Planning, 1952.

City of San José, Planning Commission. The Master Plan of San José, California, 1965.

City of San José, Redevelopment Agency. Winchester Neighborhood Improvement Plan; Strong Neighborhoods Initiative.

City of San José. “City of San José Historic Resources Inventory,” June 4, 2009

City of San José. “San José Designated Historic City Landmarks,” June 1, 2009.

Consultant Reports

National Register of Historic Places Inventory-Nomination Form: San José Downtown Commercial District, 1980.

Maps

Subdivision Map for Tract No. 1966, by Leo W. Ruth, Civil Engineer, 1957, History San José archives.

Websites

Quaker Center. http://www.quakercenter.org/Pages/AboutUsPages/Chronology.html.

San José State University. “SJSU Presidents.” http://www.sjsu.edu/about_sjsu/history/presidents.

“Santa Clara Schools are Named for Local Citizens.” City of Santa Clara, http://santaclaraca.gov/about_us/history02.html.

Other Media

California Education Code §§ 17280-17317, 80030-81149.

California Code of Regulations, Title 14, §15064.5(a)(3).

California Public Resources Code § 5024.1(c)(1).

City of San José Civic Center: Dedicatory Ceremony March 27, 1958; City Hall; Health Center; Communications.

Davis, Sam, FAIA, Interim Dean of the College of Environmental Design, U.C. Berkeley. Email correspondence to Paige J. Swartley, Esq., April 7, 2009.

Page 17

The design therefore repeats every seven panels or a total of nine times. Because the wall is circular, however, only one segment is seen from any one point. The texture and patterns of the sculpture change constantly with the play of shifting shadows by day and are dramatically effective at night. The off-

What people are saying - Write a review

We haven't found any reviews in the usual places.